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The anion zero electron kinetic energy~ZEKE! spectra of the van der Waals clusters Ar2-3Br
2 and

Ar2-3I
2 have been measured, and partially discriminated threshold photodetachment~PDTP!

experiments have been performed on Ar4-9Br
2 and Ar8-19I

2. The experiments yield size-dependent
adiabatic electron affinities~EAs! and electronic state splittings of the halogen atom in the neutral
clusters formed by photodetachment. These results are compared with simulated annealing
calculations using model potentials for the anion and neutral clusters, making use of the neutral and
anion pair potentials determined from previous work on the diatomic rare gas–halide atom
complexes@Y. Zhao, I. Yourshaw, G. Reiser, C. C. Arnold, and D. M. Neumark, J. Chem. Phys.
101, 6538~1994!#. A simple first-order degenerate perturbation theory model@W. G. Lawrence and
V. A. Apkarian, J. Chem. Phys.101, 1820 ~1994!# of the neutral cluster potentials was found to
agree well with the size-dependent splitting of the halogen2P3/2 state observed in the ZEKE spectra.
However, the binding energies calculated from the pair potentials alone were found to be
inconsistent with the experimental electron affinities, and it was necessary to include various
nonadditive terms in the simulated annealing calculations to obtain reasonable agreement with
experiment. Many-body induction in the anion clusters was found to be the dominant nonadditive
effect. The exchange quadrupole effect—i.e., the interaction of the exchange induced electron
charge distribution distortion among argon atoms with the halide charge—was also found to be
important. This comparison between experiment and theory provides a sensitive probe of the
importance of nonadditive effects in weakly bound clusters. ©1996 American Institute of Physics.
@S0021-9606~96!01426-2#

I. INTRODUCTION

In most studies of weakly interacting atoms or mol-
ecules, pairwise additivity of the potentials is assumed.
Given pair potentials,Vi j , between atomsi and j , the pair-
wise additive approximation to the total potential ofN inter-
acting atoms is

Vpair5(
i, j

N

Vi j ~ ur i2r j u!. ~1!

Herer i andr j represent the positions of atomsi and j . If the
atoms had closed valence shells, and if no deformation of the
atomic charge distributions were induced by the interactions,
then pairwise additivity would hold exactly.1 However, if the
deformation of the charge distributions due to the inter-
atomic interactions~e.g., dispersion, induction, or exchange!
is considered, the assumption of pairwise additivity breaks
down.1 This assumption can also break down if one of the
atoms has an open valence shell. Then it is necessary to
consider the electronic states of the open-shell atom which
arise from the simultaneous presence of all the other atoms;
The potential energy surfaces of these states cannot, in gen-
eral, be obtained by simply adding the pair potentials in the
sense of Eq.~1!. In either case it is necessary to extend Eq.
~1! to include nonadditive, or many-body, effects:

Vmany-body5Vpair1Vnonadd
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Vi jk •••z~r i ,r j ,r k,•••,r z!. ~2!

Nonadditive effects are believed to play a significant role
in determining the properties of bulk matter. For example,
the binding energies of rare gas solids~Ne, Ar, Kr and Xe!
measured experimentally are about 7–10 % smaller than the
binding energies calculated from accurate pair potentials.2

However, there has been some controversy about the precise
nature of the nonadditive effects involved.2,3 Furthermore, it
is in general difficult to extract detailed information about
nonadditive effects from measurements of bulk properties.3

Cluster studies represent an alternative approach to learn
about nonadditive effects. By probing the spectroscopy
and/or energetics of a cluster as a function of its size, and
comparing the results with predictions based on additive
forces alone, one can obtain considerable insight into the
various nonadditive components of the interaction potential.3

To this end, we present in this article the anion zero electron
kinetic energy~ZEKE! spectra of the Ar2–3Br

2 and Ar2–7I
2

van der Waals clusters and partially discriminated threshold
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photodetachment~PDTP! spectra of Ar4–9Br
2 and Ar8–19I

2.
We also present the results of calculations with model poten-
tials involving various nonadditive terms, in an effort to un-
derstand the experimentally observed electron affinities
~EAs! and electronic structure. Our results probe nonadditive
effects in both the cluster anion and the open-shell neutral
cluster resulting from photodetachment. This work is an ex-
tension of our previous ZEKE study of the diatomic rare
gas–halide atom complexes4 and previous ZEKE work on
the I2CO2 complex.

5

In order to extract information on many-body effects
from experimental studies of clusters, the pair potentials
must be known more accurately than the magnitude of the
many-body effect. Furthermore, the experiment must provide
information about the ‘‘true’’ potential that can be compared
with the results of calculations with model additive and non-
additive potentials. This information may consist of spectro-
scopically measured vibrational frequencies, rotational con-
stants, etc. In this case, accurate dynamical calculations are
needed to extract this information from the model potentials
for comparison with experiment. Alternatively, some experi-
ments allow a more direct measurement of the cluster bind-
ing energies, in which case comparison with model poten-
tials is much more straightforward.

Nonadditive effects can affect the rotational, vibrational,
and electronic spectroscopy of a cluster. Much of the recent
interest in this field has focused on high resolution spectros-
copy of van der Waals clusters. For example, pure rotation
spectra of Ne2Kr and Ne2Xe have been observed using Fou-
rier transform microwave spectroscopy.6 The structural in-
formation and nuclear hyperfine coupling constants deter-
mined from these spectra show evidence of nonadditivity.
There have also been a number of near and far infrared stud-
ies of molecular chromophores in rare gas clusters.3,7,8 In
many cases it is difficult to extract meaningful information
about many-body forces from spectroscopic studies because
the intermolecular pair potentials are often not well enough
characterized, in that the uncertainty in the pair potentials is
comparable to the magnitude of the many-body effects.
There has, however, been recent experimental and theoretical
progress in determining intermolecular pair potentials accu-
rately enough to learn about three-body interactions in the
Ar2HCl @Refs. 3, 8, 9, and 10~a!# Ar2HF @Refs. 7, 9, and
10~c!#, and Ar2DCl @Refs. 3 and 10~b!# systems. In work
more closely related to the results presented here, the elec-
tronic spectroscopy of Ar1–4Hg clusters has been studied
with multiphoton ionization,11 and ArnBa clusters have been
studied by laser induced fluorescence.12 Only the Ar1–4Hg
study was mass-selective. From this work, progress has been
made in identifying ‘‘nonadditive’’ effects in the excited
electronic state of these clusters with open-shell
chromophores.11,12

It is challenging to extract information on nonadditive
effects from direct spectroscopic measurements such as those
mentioned above. Even when mass selectivity can be ob-
tained, nontrivial dynamical calculations are needed to ex-
tract the vibrational and rotational structure information from
a many-body model potential in order to compare it with the

experimental spectrum. It is desirable, therefore, to measure
experimentally the binding energies~BEs! of clusters, be-
cause BEs can be readily obtained from many-body model
potentials by simple methods. Moreover, there is generally
an intuitive connection between a particular nonadditive term
and the cluster binding energy, in the sense that one can
usually predict by inspection if the binding energy will in-
crease or decrease when a given many-body term is added to
a model potential. However, in most cases, BEs of clusters
cannot be directly obtained from experimental spectra. Ex-
ceptions include the pump–probe experiments of Janda and
co-workers on Ar1–3Cl2 @Ref. 13~a!# and HeBr2 @Ref. 13~b!#
and the stimulated emission pumping experiments on the
carbazole–Ar system by Leutwyler and co-workers.14

Anion photoelectron spectroscopy~PES! of clusters has
proved useful in providing more direct information about the
relative binding energies of anion and neutral clusters. It also
has the advantage of mass selectivity. Examples include the
work of Markovichet al. on X2~H2O!n ~X25Cl2, Br2, and
I2 !,15 Bowen and co-workers on O2 Arn ,

16 and Arnoldet al.
on X2~CO2!n and X2~N2O!n .

17 The theoretical calculations
of Berkowitz and co-workers18 in conjunction with the PES
spectra of Markovichet al.15 have demonstrated the impor-
tance of nonadditive inductive effects in Br2~H2O!n clusters.

However, there are two problems with trying to extract
information on nonadditive forces from these studies. First,
the pair potentials for the relevant neutral and ionic species
are not in general known very accurately; this is particularly
true for clusters involving molecular solvents. Second, the
resolution of conventional anion PES is typically in the range
of 80 cm21 ~Ref. 17! to 400 cm21 ~Ref. 15!, depending on
the type of energy analyzer used. Because of this limited
resolution, anion PES experiments can only be sensitive to
the largest nonadditive effects, such as inductive effects in
the anion clusters.

The anion ZEKE technique used in the present experi-
ments on ArnBr

2 and ArnI
2 combines the advantage of mass

selectivity with much higher resolution~ca. 2–3 cm21 for
atomic systems! than PES experiments. This resolution al-
lows accurate measurement of electron affinities, as well as
spectroscopic observation of the electronic structure of the
neutral ArnX clusters. The Ar–X2 and Ar–X pair potentials
are known accurately from our previous work on the di-
atomic species.4 Thus, by employing simulated annealing
procedures to determine the binding energies and neutral
electronic structure from model potentials, we can directly
compare our experimental results with the pairwise additive
predictions and explore the effects of various many-body
corrections to the additive potentials. From this comparison,
we can obtain a detailed picture of nonadditive effects in
ArnX

2 and ArnX clusters.
This article is organized as follows. In Sec. II we briefly

describe the experimental apparatus and techniques. In Sec.
III, we present the anion ZEKE and PDTP spectra, determine
the experimental EAs, assign the electronic structure ob-
served in the ZEKE spectra, and briefly discuss the observed
vibrational structure. In Sec. IV, we describe the methods
and present the results of calculations of the cluster EAs and
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neutral electronic structure from model additive and nonad-
ditive potential, and compare them with the experimental
results. In Sec. V, we summarize, considering what we can
and cannot conclude about many-body interactions on the
basis of our results and suggest future avenues for experi-
mental and theoretical research.

II. EXPERIMENT

Zero electron kinetic energy~ZEKE! spectroscopy was
first developed for photoionization of neutrals by Mu¨ller-
Dethlefs, Sander, and Schlag19 and applied to negative ion
photodetachment by Neumark and co-workers.20 The experi-
mental apparatus has been described in detail elsewhere.20

Briefly, ArnX
2 clusters are produced by expanding a mixture

of approximately 0.1–0.5 %. Freon~CF3I or CF2C1Br, PCR
Co.! in a ca. 75% argon/25% helium mixture through a
pulsed valve~General Valve Series 9! with a 0.5-mm-diam
orifice. Backing pressures are typically 60–80 psi. The ex-
pansion is crossed with a 1 keV electron beam. Halide anions
are formed by dissociative attachment of low energy second-
ary electrons and undergo clustering in the continuum flow
region of the free expansion. The molecular beam is colli-
mated with a skimmer, accelerated to 1 keV, and mass-
selected with a 1 m long collinear time-of-flight mass
spectrometer.20~c!,21 The mass-selected ions then enter a dif-
ferentially pumped detection region and are irradiated with a
pulse from an excimer pumped dye laser~Lambda Physik!.
For the ground states of ArnI BBQ, PBBO, Exalite 398, QUI,
and DMQ laser dyes~Exciton! were used. For the Ar2–3I
excited state scans rhodamine 610 dye was frequency
doubled with a potassium dihydrogen phosphate~KDP! crys-
tal. For the ArnBr clusters, DMQ and PTP dyes were used
for the ground states; rhodamine 640 was doubled with a
KDP crystal for the excited state Ar2–3Br spectra. The power
of the undoubled light was typically 7–20 mJ per pulse at the
interaction region. The frequency-doubled laser power was
about 2 mJ per pulse. The laser wavelength was calibrated
from 337 to 400 nm with the Ne lines observed by the op-
togalvanic effect in a Fe–Ne hollow cathode lamp. The fun-
damental wavelength of the frequency-doubled light was
calibrated in the region 600–640 nm with an iodine absorp-
tion cell.

Two modes of electron detection were used in the
present studies: the high resolution ZEKE mode, and the
lower resolution partially discriminated threshold photode-
tachment~PDTP! mode. In the ZEKE mode, the photode-
tached electrons are extracted collinearly by a weak~2–5
V/cm! electric field after a 300–500 ns delay and deflected to
an off-axis microchannel detector. Detection is gated to pro-
vide temporal filtering. A series of a apertures between the
detachment point and detector provide spatial discrimination.
This combination of spatial and temporal filtering discrimi-
nates against high energy electrons, so that as the laser wave-
length is scanned, only photoelectrons with nearly zero ki-
netic energy are detected. The resolution of the instrument is
about 2–3 cm21 for atomic systems.20 However, in the spec-
tra of molecules, the peaks are broadened by unresolved ro-

tational structure. For the systems studied in this article, the
observed peaks were at least 8 cm21 wide @full width at half
maximum~FWHM!#.

In the PDTP mode,20~b! there is no delay between the
laser pulse and electron extraction, retaining only spatial fil-
tering as in the ‘‘steradiancy detector’’ first described by
Baer, Peatman, and Schlag22 and Spohret al.22 This results
in some discrimination against electrons with energies
greater than about 150 cm21 and leads to peaks about 200
cm21 wide in the present case. However, the thresholds, and
hence the electron affinities, can be determined more accu-
rately than this, to within approximately650 cm21. Because
nearly all of the electrons are collected, this mode of opera-
tion has the advantage of much higher sensitivity than the
ZEKE mode.

The ZEKE spectra were averaged over several thousand
laser shots per point taken in several separate scans. The
PDTP spectra were averaged over 300–1000 laser shots per
point. All spectra were normalized to the ion signal and laser
power.

No obvious ‘‘magic numbers’’ were seen in the mass
spectra. The ion signal smoothly decreased in intensity with
increasing cluster size in the mass spectra of both the ArnBr

2

and ArnI
2 clusters.

III. RESULTS

A. Ar 2–3 I
2 and Ar 2–3Br

2

The ZEKE spectra of Ar2Br
2 and Ar3Br

2 are shown in
Fig. 1, along with the spectrum of the diatomic ArBr2 com-
plex, reproduced from Ref. 4. ZEKE spectra of ArI2, Ar2I

2,
and Ar3I

2 are displayed in Fig. 2. All the spectra have two
sets of features, separated by approximately the spin–orbit
splitting of the halogen atoms: 3685 cm21 for Br and
7603.15 cm21 for I.23 We assign the lower energy set of
features to electronic states arising from the ground2P3/2
state of the halogen atom and the higher energy features to
2P1/2 asymptotic states. The ground state manifolds of the
Ar2–3I clusters are dominated by two sharp, intense peaks,
labeledX and I , separated by about 40–65 cm21. In the
Ar2–3Br spectra, both features are also present, but peakI is
less intense and distinct than in the ArnI spectra.

In the previous work on the diatomic species4 the corre-
sponding features were assigned to the origins of the two
electronic states that correlate to the halogen2P3/2 asymp-
tote, referred to as theX 1

2 ~j a5
1
2, V5 1

2! and I
3
2 ~j a5

3
2, V

5 3
2! states, in Hund’s case~c! notation.

24 The feature labeled
II 12 in the diatomic spectra was assigned to the origin of the
II 12 state~j a5

3
2, V51

2!, which correlates to the halogen
2P1/2

asymptote. We expect an analogous set of three doubly de-
generate electronic states to be present in the polyatomic
clusters. The lower2P3/2 halogen state is split into two dou-
bly degenerate states by the weak interaction with the argon
atoms. We refer to these states as theX and I states, by
analogy with the diatomic case, dropping theV designation,
as this is no longer a good quantum number in the poly-
atomic case. Note that here the ‘‘X state’’ always refers to
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the lowest energy state at the equilibrium geometry regard-
less of the symmetry of the cluster.

TheX andII state origins are blue shifted relative to the
corresponding atomic lines by several hundred cm21. The
blue shift increases as the number of argon atoms increases.
This demonstrates that the anionic clusters are more strongly
bound than the neutral species.

In the Ar2Br
2 spectrum@Fig. 1~b!# we see some partially

resolved peaks to the red and blue of theX state origin.
There is also a long ‘‘tail’’ to the blue of theI state origin.
We attribute all these features to transitions to or from vibra-
tionally excited states. Based on our previous interpretation
of the diatomic ArBr2 spectrum,4 it is likely that the features
to the red of theX state origin are due to hot-band or
sequence-band transitions from vibrationally excited anion
states. Likewise, the features to the blue of theX state origin
may be transitions to vibrationally excited neutral ground
states and/or hot-band transitions to theI state. The vibra-
tional progressions are not as well resolved as in the di-
atomic spectra. The observed structure is probably due to
many overlapping transitions involving more than one vibra-
tional mode. This spectral congestion appears to be more
severe to the blue of theI state origin, possibly indicating a
larger geometry change between theI state and the anion
than between theX state and the anion, as was seen in

ArBr2.4 The peaks to the red and blue of the II state origin
may similarly be understood as sequence-band or hot-band
transitions, and transitions to vibrationally excited neutral
states, respectively.

The spectrum of Ar3Br
2 @Fig. 1~c!# appears even more

congested. There is a distinct peak 20 cm21 to the blue of the
X state origin, in addition to numerous poorly resolved fea-
tures. Again there appears to be an extended unresolved pro-
gression to the blue of theI state-origin. TheII state has two
prominent peaks, separated by 14 cm21, plus some other
indistinct peaks to the blue. It is not clear which of the two
peaks is in fact theII state origin.

In the case of Ar2I
2 @Fig. 2~b!#, the vibrational structure

is somewhat less well resolved than that in Ar2Br
2. There is

a clear feature 11 cm21 to the red of theX state origin, as
well as some poorly resolved structure between the origins of
the X and I states. There is a tail to the blue of theI state
origin. The spectrum of theII state is rather sparse, with
some peaks 10–30 cm21 to the red of the origin due to
sequence or hot bands, and a slight shoulder to the blue. The
lack of any extended progression indicates that the anion–II
state transition is quite vertical.

The spectrum of Ar3I
2 @Fig. 2~c!# shows clearer vibra-

tional resolution than Ar2I
2. There are two peaks spaced by

8 and 32 cm21 to the blue of theX state origin. However, the

FIG. 1. ZEKE spectra of~a! ArBr2, ~b! Ar2Br
2, and~c! Ar3Br

2. The arrows
indicate the neutral electronic state origins.

FIG. 2. ZEKE spectra of~a! ArI2, ~b! Ar2I
2, and ~c! Ar3I

2. The arrows
indicate the neutral electronic state origins.
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sequence-band structure to the red of the origin is not re-
solved. TheII state of Ar3I displays three distinct peaks, 7,
17, and 24 cm21 to the blue of the origin, as well as some
less distinct sequence-band structure to the red.

The partially resolved vibrational structure seen in these
spectra is of considerable interest and will be considered fur-
ther in future publications. In this article, we are primarily
concerned with the accurate electron affinities and state split-
tings yielded by these spectra.

B. Ar 4–7I
2

The ZEKE spectra of the Ar4–7I
2 clusters are shown in

Fig. 3. For these clusters we studied only the lower~2P3/2
asymptotic! states. In the Ar4I spectrum@Fig. 3~a!# the ori-
gins of theX andI electronic states are distinct. In the Ar5I

2

spectrum@Fig. 3~b!# the peak corresponding to theX state
origin is quite broad, and theI state appears as an unresolved
shoulder. TheI state also appears relatively less intense than
in the Ar1–4I spectra. Based on the profile of this shoulder,
we can only estimate the position of theI state origin to620
cm21.

The spectra of Ar6I and Ar7I @Fig. 3~c! and 3~d!# are
more congested. The positions of theX and I state origins
can be estimated, as indicated by the arrows in the figures,
but it is not possible to discern any reproducible vibrational
structure. As we go from Ar4I to Ar5I, the separation be-

tween theX and I states appears to decrease. Although the
exact splitting is difficult to discern from the Ar6I

2 spectrum,
it appears in this case that theX– I splitting again decreases
somewhat from Ar5I. However, the splitting appears to in-
crease again in the Ar7I spectrum, in which the two states are
better resolved than in the Ar6I spectrum.

We attempted to observe ZEKE spectra of Ar8I
2 and

larger clusters, but obtained only unstructured spectra with
no reproducible features.

C. Partially discriminated threshold photodetachment
spectra

Because of the increasing spectral congestion with in-
creasing cluster size and the difficulty of producing sufficient
quantities of large clusters with our source, it was not pos-
sible to perform the ZEKE experiment on clusters withn.7
in the case of ArnI

2, and n.3 for ArnBr
2. In the PDTP

mode of operation it is possible to work with much smaller
quantities of anions, because nearly all of the photoelectrons
near the detachment threshold are collected. Therefore, only
the PDTP experiment was performed for Ar4–9Br

2 and
Ar8–19I

2.
The PDTP spectra of Ar4–9are described below. We demonstrate that the experi-

mentally observed cluster properties are not consistent with

pairwise additive potentials, and then consider various non-

additive corrections to the potentials.

FIG. 5. PDTP spectra of Ar8–19I
2.

TABLE I. Experimental adiabatic electron affinities, excited state origins, and electronic state splittings for
ArnBr. All energies are in cm21. Uncertainties given are in parentheses.

n EA ~X state origin! I state origin DX– I I I state origin DX– II

0 27 129.2a ••• ••• 30 814a,b 3685b

1 27 429.6~3.0! 27 467.4~1.6! 37.8 ~2.3! 31 132.3~1.6! 3702.7~3.4!
2 27 722.4~3.0! 27 775.5~5.0! 53.1 ~5.5! 31 427.8~2.2! 3705.4~3.7!
3 27 994.6~3.0! 28 059.4~1.6! 64.8 ~2.3! 31 702.8~2.2! 3708.2~3.7!
4 28 266 ~50! ••• ••• ••• •••
5 28 532 ~50! ••• ••• ••• •••
6 28 778 $50! ••• ••• ••• •••
7 29 029 ~50! ••• ••• ••• •••
8 29 258 ~50! ••• ••• ••• •••
9 29 491 ~50! ••• ••• ••• •••

aC. Blondel, P. Cacciani, C. Delsart and R. Trainham, Phys. Rev. A40, 3698~1989!.
bC. E. Moore,Atomic Energy Levels, Circ. Natl. Bur. Std. 467~1949!, Vol. 1.
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A. Pair potentials

The pair potential of the ArBr neutral has been deter-
mined in scattering experiments by Lee and co-workers.27

The scattering experiments characterized only the neutral
X 1

2 andI
3
2 state potentials. Our previous ZEKE results4 on the

ArBr complex provided further refinement of the potential of
Ref. 27, as well as information on the neutralII 12 state and
anion potentials. In the case of ArI, scattering results are not
available, so the ZEKE spectrum is the only source of infor-
mation on the ArI diatomic potentials.

The neutral Ar–X potentials are of the Morse–Morse-
switching function–van der Waals~MMSV! form. The re-
duced form of this potential, withx5r /rm and f (x)5V(r )/
e, is

f ~x!5e2b1~12x!22eb1~12x!, 0,x<1

5e2b2~12x!22eb2~12x![M2~x!, 1,x<x1

5SW~x!M2~x!1@12SW~x!#W~x!, x1,x,x2

52C6rx
262C8rx

28[W~x!, x2<x,`, ~6!

where e is the well depth,rm is the bond length, and the
switching function is given by

SW~x!5
1

2 S cosp~x2x1!

x22x1
11D . ~7!

The reduced dimensionless coefficientsC6r andC8r are re-
lated to the usual dispersion coefficientsC6 andC8 by

C6r5
C6

erm
6 , C8r5

C8

erm
8 . ~8! FIG. 6. Schematic energy level diagram of the ArnX

2 anion and ArnX
neutral electronic states.

TABLE II. Experimental adiabatic electron affinities, excited state origins, and electronic state splittings for
ArnI. All energies are in cm21. Uncertainties are given in parentheses.

n
EA ~X state
origin! I state origin DX– I I I state origin DX– II

0 24673.3a ••• ••• 32 276.5a,b 7603.15b

1 24 888.3~3.0! 24 925.5~1.5! 37.2 ~2.2! 32 512.6~2.2! 7624.3~3.7!
2 25 100.9~3.0! 25 152.9~3.0! 52.0 ~3.4! 32 731.2~2.2! 7630.3~3.7!
3 25 303.0~3.0! 25 368.0~4.5! 65.0 ~5.1! 32 936.4~2.2! 7633.4~3.7!
4 25 502.2~3.0! 25 571~10! 69 ~10! ••• •••
5 25 702 ~10! 25 762~10! 60 ~14! ••• •••
6 25 907 ~15! 25 950~15! 43 ~21! ••• •••
7 26 083 ~15! 26 163~10! 60 ~18! ••• •••
8 26 247 ~50! ••• ••• ••• •••
9 26 413 ~50! ••• ••• ••• •••
10 26 582 ~50! ••• ••• ••• •••
11 26 753 ~50! ••• ••• ••• •••
12 26 904 ~50! ••• ••• ••• •••
13 27 079 ~50! ••• ••• ••• •••
14 27 226 ~50! ••• ••• ••• •••
15 27 375 ~50! ••• ••• ••• •••
16 27 488 ~50! ••• ••• ••• •••
17 27 617 ~50! ••• ••• ••• •••
18 27 717 ~50! ••• ••• ••• •••
19 27 794 ~50! ••• ••• ••• •••

aH. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data14, 731 ~1985!.
bC. E. Moore,Atomic Energy Levels, Circ. Natl. Bur. Std. 467~1949!, Vol. 1.
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The anion potentials have the same form, except that the
van der Waals portion is replaced by a function including
charge-induced dipole~r24! and charge-induced quadrupole
and dispersion~r26! terms:

f ~x!52B4rx
242B6rx

26[W~x!, x2<x,` ~9!

with

B4r5
B4

erm
4 , B6r5

B6

erm
6 . ~10!

Further details about the construction of the Ar–Br and Ar–I
pair potentials are given in Ref. 4.

The MMSV potential parameters used in this work are
given in Table III. Some of the parameters used here have
been modified slightly from those published previously.4 The
reason for this is that in the previous work, the well depths of
the three neutral electronic states and the anion were related
to each other using the relationships implied by Fig. 6, with
the zero point energies used in these relations assumed to be
equal to half of the observed vibrational fundamental fre-
quencies. A slightly more accurate procedure, used to obtain
the parameters in Table III, is to calculate the actual zero
point energies from the model potentials. The well depth
parameters are then iteratively adjusted in order to satisfy
Eqs.~3!–~5!, as well as to fit the observed spectra. The well
depths obtained in this way differ from those given previ-
ously by no more than 2–3 cm21, which is within the uncer-
tainties stated in Ref. 4.

It is important here to consider the uncertainties in the
pair potential parameters. In the case of the ArBr potentials,
the scattering experiments provide information on the abso-
lute values of the well depths and bond lengths for theX 1

2

state. On the other hand, the ZEKE spectra, although quite
sensitive to therelative bond lengths and well depths be-
tween the anion and neutral states, are not very sensitive to
the absolutevalues of these parameters. Therefore, therm
ande parameters for theX 1

2 state of ArBr were fixed at the
values of Lee and co-workers.27 The parameters for the anion
and remaining neutral states were then adjusted to be consis-
tent with the relations implied by Fig. 6, as well as to repro-
duce the ZEKE spectrum. The uncertainties inrm and e
stated in Ref. 27 are60.2 Å and69 cm21, respectively, so

the absolute uncertainties ofrm ande for the anion and the
other neutral states are of about the same order. However, the
relativeuncertainties inrm ande between the anion and neu-
tral are significantly smaller than this. For example, because
the uncertainty in the EA obtained from the ZEKE spectrum
is 63 cm21, the differenceea2eX is known with about this
same uncertainty.@See Eq.~2!#. Similarly, the relative uncer-
tainties in rm are found to be about 1–2 %~0.04–0.08 Å!,
based on the fit to the ZEKE spectra.

For ArI, for which scattering experiments have not been
performed, modified versions of the polarizability correlation
formulas of Pirani and co-workers28 were used to estimaterm
ande for the II 12 state of ArI, as described in Ref. 4. Then the
remaining neutral and anion potentials were adjusted to fit
the ZEKE spectrum. The estimatedabsoluteuncertainties in
rm and e of ArI are 618 cm21 for e and60.2 Å for rm .
However, the same considerations about therelative uncer-
tainties among the anion and neutral states also apply for
ArI. The relative uncertainties ine andrm are63 cm21 and
60.04–0.08 Å, respectively.

To model the Ar–Ar pair interaction, the accurate
Hartree–Fock dispersion~HFD-B2! potential of Aziz and
Slaman29 was used. For this potentialrm53.7565 Å and
e599.5465 cm21. For the detailed form and other parameters
of this well-known potential, see Ref. 29.

The pairwise additive approximations to the ArnBr
2 and

ArnI
2 binding energies were found by minimizing the addi-

tive potentials, using the simulated annealing procedure to be
described below, from

ea5min~VArX1VArAr !, ~11!

with VArX5(iVi0~ur i2r0u!, and VArAr5(i, jVi j ~ur i2r j u!,
where the sums run over the Ar atoms,r i is an Ar atom
position, andr0 is the halide position. The calculation of the
neutral potentials is more complex because of the open-shell
nature of the halogen atom and is discussed in Sec. IV E.

B. Simulated annealing method

We use a simple molecular dynamics simulated anneal-
ing procedure to determine the minimum energy cluster ge-
ometries. The simulated annealing program used here was

TABLE III. MMSV pair potential parameters of argon halides.

ArI ArBr

X
1
2 I

1
2 II

1
2 Anion X

1
2 I

3
2 II

1
2 Anion

e ~meV! 18.8 13.9 16.0 45.8 16.5 11.5 14.0 54.4
r m ~Å! 3.95 4.18 4.11 4.07 3.73 3.94 3.89 3.78
b1 7.15 7.25 6.90 5.70 6.80 7.72 6.70 5.10
b2 6.18 6.30 6.40 4.45 6.50 7.10 6.35 4.45
x1 1.01 1.04 1.04 1.08 1.02 1.012 1.01 1.065
x2 1.62 1.62 1.64 1.62 1.59 1.63 1.58 1.66
C6 ~eV Å6! 98.4 98.4 98.4 ••• 65.2 70.2 68.8 •••
C8 ~eV Å8! 715 715 715 ••• 379 379 379 •••
B4 ~eV Å4! ••• ••• ••• 12.8 ••• ••• ••• 12.5
B6 ~eV Å6! ••• ••• ••• 162 ••• ••• ••• 120.5
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adapted from a molecular dynamics program written by Li
and co-workers.30 The procedure used is as follows:

~1! Random initial atomic positions are generated. The
initial positions lie within a 6–15 Å box, depending on the
size of the cluster, and are subject to the constraint that no
two atoms may be closer than a certain cutoff distance, usu-
ally 3.5 Å. The latter condition ensures that the cluster starts
out in an attractive region of the potential surface so that
dissociation does not occur.

~2! The classical equations of motion are solved for
about 5 ps, using a Gear predictor–corrector algorithm
started with a 16 step Runge–Kutta algorithm.30 The step
size is 5 fs.

~3! Kinetic energy is removed by rescaling the atomic
velocities. When starting with random positions, the kinetic
energy is removed very quickly, so that the velocities and
kinetic energies are essentially reset to zero with each rescal-
ing. This rapid quenching was found to be necessary to pre-
vent evaporation.

~4! Steps~2! and ~3! are repeated until a minimum is
found. This typically requires 100–250 ps.

~5! Beginning with the minimum configuration found by
the above procedure, kinetic energy is added, constrained so
that the translational energy of the cluster center of mass and
its angular momentum are zero. To prevent evaporation, the
initial kinetic energy was usually set to not more than 25–
33 % of the total well depth. Then steps~2! and ~3! are
repeated, but with kinetic energy removed much more gradu-
ally, by rescaling the velocities by a factor31

F11
tscale
tconst

SKEtarg

KEav
21D G1/2

every 5 ps. Heretscaleis the time between rescalings,tconst is
a time constant~typically 50 or 100 ps!, KEav is the average
kinetic energy, and KEtarg is a target kinetic energy, set to a
very small value in order to find a minimum. The entire
procedure typically requires 5–10 ns.

~5!Finally, the minimum energy configuration is located
more precisely using a simple gradient minimization
routine.32

The entire annealing procedure was repeated 5–20 times
for each cluster to ensure that the global minimum was
found. In this process, low-lying local minima were often
also found. In order to locate higher-lying local minima, an
interval of 250 fs or less between rescaling steps is used in
steps~2!–~4!, to prevent equilibration of the cluster as ki-
netic energy is removed.

C. Zero point energy calculation

Once the minimum energy configurations and classical
binding energies are found, it is necessary to know the zero
point energies in order to use Eqs.~3!–~5!. The model po-
tentials are analytical functions of the nuclear Cartesian co-
ordinates, allowing the zero point energies to be estimated by
the following procedure. The normal coordinates of the clus-
ters were found in terms of linear combinations of Cartesian
displacement coordinates, using standard techniques.33 Then

each of the 3N26 single-mode vibrational Schro¨dinger
equations was solved using a simple one-dimensional dis-
crete variable representation~DVR! procedure.5,34–36The to-
tal zero point energy was then obtained by adding up the
single-mode values. In this way, the anharmonicity of the
potential is approximately accounted for, although interac-
tions between normal modes are neglected. The zero point
energy calculation was limited to the portion of the potential
in the vicinity of the minimum structure, so that any split-
tings due to tunneling are not reproduced.

D. Anion minimum energy geometries

The minimum energy geometries found using pairwise
additive potentials for Ar2–19I

2 are shown in Fig. 7. Similar
structures were found for Ar2–9Br

2. The calculated anion
binding energies and zero point energies are given in Tables
IV and V.

For Ar2–3X
2 ~X5Br or I!, there is only one minimum, in

which all atoms are in contact with each other. Linear
~Ar2X

2! or planar ~Ar3X
2! geometries are not stable with

additive potentials.
In the minimum energy structures of larger clusters

~ArnI
2, 4<n<17, and ArnBr

2, 4<n<9!, all the Ar atoms
contact the central halide atom. This type of structure is en-
ergetically favorable because each Ar–X2 ‘‘bond’’ is about
four times stronger than an Ar–Ar ‘‘bond.’’ For Ar4X

2, one

FIG. 7. Minimum energy structures of Ar2–19I
2 clusters found using pair-

wise additive potentials.
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local minimum isomer is seen~C3v point group! which has
one Ar atom in contact with the other three argons but not
with the halide. In Ar4I

2, its energy is about 200 cm21

higher than that of the global minimum. The analogous
Ar4Br

2 isomer lies 256 cm21 above the global minimum.
These energy differences correspond approximately to one
Ar–X2 ‘‘bond.’’ Ar 5X

2 has two local minima with approxi-
mately the same separations from the global minimum as in
the Ar4X

2 clusters.
The clusters with 6<n<17 show two types of local

minima. In one type, the Ar atoms are all in contact with the
halide—as in the global minimum—but have fewer Ar–Ar
‘‘bonds.’’ These typically differ in energy from the global
minimum by approximately the magnitude of an Ar–Ar
‘‘bond,’’ i.e., about 100 cm21. The other type, seen already
for n,6, are structures in which one or more Ar atoms are
not in direct contact with the halide. This type of isomer

usually differs in energy from the global minimum by ap-
proximately the energy of one or more Ar–X2 ‘‘bonds.’’

For ArnI
2, rare gas atoms continue to fit around the ha-

lide without significant crowding up ton515. Atn516 there
is some crowding, so that the Ar–I2 contribution to the po-
tential is reduced. Ar17I

2 constitutes a ‘‘closed’’ solvent
shell ~at 0 K!. It consists of a capped pentagonal bipyramid
structure (D5h), with the axial Ar atoms significantly further
from the halide than the others. Subsequent Ar atoms are
added outside the first solvent shell. In the case of ArnBr

2,
we did not observe the closing of the solvent shell since we
did not perform calculations forn.9.

E. Neutral open-shell potentials

Because of the anisotropy of the open-shell halogen
atom in the neutral clusters, the potentials cannot in general

TABLE IV. Results of calculations with pairwise additive ArnBr2 anion potentials, and ‘‘matrix-additive’’
ArnBr neutral potentials. All energies are in cm21.

n ea v0
a ex v0

X eI v0
I DX– I eII v0

II DX– II EAadd

0 0 0 0 0 0 0 0 0 0 3685a 27129.2b

1 438.8 20.7 133.1 15.6 92.8 13.5 38.2 112.9 13.4 3703.0 27429.8
2 977.1 56.8 349.4 42.3 295.4 45.0 56.6 319.6 44.6 3717.1 27742.3
3 1614.9 107.4 662.6 85.1 599.9 89.6 67.3 628.7 88.6 3722.4 28059.2
4 2260.0 157.8 977.3 127.6 916.6 135.2 68.4 945.0 132.9 3722.6 28382
5 2911.3 207.5 1293.6 168.7 1243.7 181.1 62.3 1267.3 176.4 3719.0 28708
6 3659.7 267.5 1696.2 211.7 1677.2 248.5 55.8 1686.0 230.0 3713.6 29037
7 4318.6 315.5 2042.9 268.9 2001.2 289.7 62.5 2014.8 272.9 3717.1 29358
8 5069.8 371.1 2465.0 315.8 2413.9 337.1 72.4 2432.4 323.6 3725.4 29679
9 5815.2 421.3 2880.0 360.3 2807.1 375.7 88.2 2837.7 370.1 3737.1 30003

aC. E. Moore,Atomic Energy Levels,Circ. Natl. Bur. Std. 467~1949!, Vol. 1.
bC. Blondel, P. Cacciani, C. Delsart, and R. Trainham, Phys. Rev. A40, 3698~1989!.

TABLE V. Results of calculations with pairwise additive ArnI
2 anion potentials, and ‘‘matrix-additive’’ ArnI

neutral potentials. All energies are in cm21.

n ea v0
a eX v0

X eI v0
I DX– I eII v0

II DX– II EAadd

0 0 0 0 0 0 0 0 0 0 7603.15a 24673.3b

1 369.4 17.3 151.6 14.6 112.1 12.3 37.2 129.0 13.2 7624.4 24888.3
2 838.4 51.0 385.4 41.2 332.0 42.4 54.5 355.5 42.4 7634.3 25116.5
3 1406.8 98.4 718.1 83.2 653.1 85.8 67.6 682.5 85.4 7640.9 25346.8
4 1982.0 145.8 1051.5 125.1 986.0 130.1 70.5 1016.3 128.7 7642.0 25583
5 2562.3 192.7 1385.6 165.8 1328.5 174.9 66.2 1355.1 171.3 7639.2 25823
6 3229.2 249.4 1799.2 208.3 1767.6 233.9 57.3 1782.7 222.5 7633.8 26062
7 3815.2 295.3 2151.3 257.8 2112.5 279.6 60.6 2126.9 264.3 7634.0 26300
8 4469.2 343.5 2569.3 300.4 ••• ••• ••• ••• ••• ••• 26530
9 5094.8 379.9 2963.2 334.7 ••• ••• ••• ••• ••• ••• 26760
10 5731.8 436.9 3369.0 390.0 ••• ••• ••• ••• ••• ••• 26990
11 6366.8 476.1 3764.8 428.1 ••• ••• ••• ••• ••• ••• 27227
12 7044.3 539.6 4199.3 483.9 ••• ••• ••• ••• ••• ••• 27463
13 7796.7 586.8 4706.4 530.4 ••• ••• ••• ••• ••• ••• 27707
14 8519.3 645.1 5159.0 572.8 ••• ••• ••• ••• ••• ••• 27961
15 9280.6 710.5 5686.6 641.6 ••• ••• ••• ••• ••• ••• 28198
16 9914.3 777.5 6143.3 693.7 ••• ••• ••• ••• ••• ••• 28360
17 10561.3 850.4 6589.0 770.0 ••• ••• ••• ••• ••• ••• 28565
18 11102.2 913.0 7061.3 804.9 ••• ••• ••• ••• ••• ••• 28606
19 11648.0 979.3 7498.0 880.8 ••• ••• ••• ••• ••• ••• 28725

aC. E. Moore,Atomic Energy Levels, Circ. Natl. Bur. Std. 467~1949!, Vol. 1.
bH. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data14, 731 ~1985!.
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be obtained by simply adding the Ar–X pair potentials. This
is clear from the observed spectra. For example, in the di-
atomic ArI molecule anX– I splitting of 37 cm21 is
observed.4 If the potentials were simply additive, one would
predict anX– I splitting of 74 cm21 for Ar2I. The observed
DX– I in Ar2I is 52 cm21. The simple additive prediction is
well outside experimental uncertainty.

This ‘‘nonadditivity’’ of the open-shell potentials has
been discussed by Lawrence and Apkarian,37 whose expla-
nation we follow here. The nonadditivity can most easily be
understood if we momentarily neglect the effect of spin–
orbit coupling. In this case there are two electronic states of
the diatomic complex corresponding to the two possible ori-
entations of the singly occupied halogenp orbital relative to
the argon atom.24,38 A 2S state arises when the singly occu-
pied p orbital lies along the internuclear axis, and a doubly
degenerate2P state corresponds to the singly occupiedp
orbital lying perpendicular to the internuclear axis. However,
if the cluster contains additional Ar atoms,L is no longer a
good quantum number if the polyatomic cluster is not linear.
Consider, for example, the case of Ar2I. The singly occupied
halogenp orbital will not, in general, lie either parallel or
perpendicular to either of the Ar–I internuclear axes. There-
fore the Ar–I interaction potentials in Ar2I will not be the
same as the potentials of either the2S or 2P diatomic states,
but—in the first approximation—may be considered to be
linear combinations of the diatomic potentials. Thus, in order
to obtain the potentials of Ar2I and larger open-shell clusters
from the diatomic potentials, our concept of pairwise addi-
tivity must be extendedto include this mixing of the di-
atomic electronic states. We describe how this is done in
more detail below.

A simple first-order perturbation theory treatment of the
interaction of an open-shell atom with several closed-shell
~rare gas! atoms in terms of the diatomic potentials has been
developed by various workers.39–42 These methods have
been used to study open-shell atoms in rare gas matrices,
clusters, and on surfaces.12,37,43–45Our implementation here
most closely resembles that of Lawrence and Apkarian,37

who studied the emission spectra of I atoms in Xe and Kr
matrices. The theory is briefly as follows.

The Arn–X interaction is modeled by an effective poten-
tial depending on the rare gas coordinates and on the coor-
dinates of the ‘‘hole’’ in the singly occupied halogenp or-
bital in an arbitrary space-fixed frame:

H85(
k
VArnX

~r ,Rk!1HSO. ~12!

Here, the sum is over the rare gas atoms,r is the coordinate
of the ‘‘hole,’’ Rk are the rare gas coordinates relative to the
halogen nucleus, andHSO is the spin–orbit interaction
Hamiltonian.

The potentialVArnX
is then expanded in Legendre poly-

nomials in r̂•R̂k . We are ultimately interested in the matrix
elements ofH8 in a p-orbital basis, and only the first two
even terms of the expansion contribute to these. Hence, we
write

H85(
k

@V0~r ,Rk!1V2~r ,Rk!P2~ r̂•R̂k!#1HSO. ~13!

In the diatomic case~one Ar atom!, the expectation values of
these two expansion coefficients,V0(R) andV2(R), can be
shown, using the relations given by Haberland24 and Aqui-
lanti et al.,38 to be related to the spectroscopic diatom poten-
tials by

V0~R!5 1
3@VX

1
2
~R!1VI

3
2
~R!1VII

1
2
~R!#. ~14!

and

V2~R!5 5
3@VX

1
2
~R!1VII

1
2
~R!22VI

3
2
~R!#. ~15!

Here, the zero for each potential is set at the potential asymp-
tote. ~2P1/2 for VI 3

2
, and2P3/2 for VX 1

2
andVII 1

2
!. In deriving

these equations it is assumed that the spin–orbit constantD
is independent ofR.

With some effort, one can show that for a cluster with
many Ar atoms, the perturbation HamiltonianH8 is given by
a 636 matrix:37,42

H85(
k
V0~Rk!•11V2~Rk!•M ~Rk!, ~16!

whereM ~Rk! is a 636 Hermitian matrix involving the argon
atom coordinates. The detailed form of the matrixH8 has
been given, in the uJ,mJ& basis, by Lawrence and
Apkarian.37 Diagonalization ofH8 yields three doubly de-
generate eigenvalues, corresponding to the potentials of the
X, I , andII states.

In our implementation, an analytical form for the eigen-
values was found using the Maple V program. This allowed
the eigenvalues to be calculated approximately 10 times
faster than by numerical diagonalization and saved consider-
able computer time. The potentials,VArnX

, are then referred
to their own asymptotes by adding13D to theX and I state
potentials, and subtracting23D from theII state potential. The
total potential of the cluster is then obtained by adding the
Ar–Ar potentials in a pairwise fashion. The well depths are
found by minimizing these potentials using the simulated
annealing and gradient minimization procedures described in
Sec. IV B. For theX state, for example,

eX5min~VArnX
1VArAr !, ~17!

with VArAr the same as in Eq.~11!.
There are several assumptions implicit in this treatment

of the open-shell potentials. First, the basis set is limited top
orbitals; excited orbitals of the halogen or rare gas atoms are
not included. Thus, many-body effects due to polarization of
the halogen atom or charge transfer are neglected. Also, we
assume that the spin–orbit constantD is independent of the
internuclear separations, as well as independent of the num-
ber of rare gas atoms in the cluster. To verify the former
assumption,D was calculated as a function ofR for ArBr
and ArI, using the relations given by Haberland24 and Aqui-
lanti et al.,38 and the three diatomic potential energy curves
determined from the ZEKE spectra. The calculatedD does
not vary more than 1 meV~0.1%! for ArI and not by more
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than 5 meV~1%! for ArBr for R greater than the zero cross-
ing point. The assumption thatD is independent of the num-
ber of argon atoms is more questionable, as we will see
below.

The above method of calculating the adiabatic potential
surfaces was used directly in the simulated annealing proce-
dure for the smaller clusters~n>6!. For the larger clusters,
the annealing was first performed using the anion potentials
described above, and then the system was allowed to relax
~to optimize the geometry! on each of the neutral surfaces. In
most cases, the anion and neutral have approximately the
same global minimum configurations. There are some excep-
tions. For instance, the global minimum isomer of the
Ar5Br

2 anion has all five of the Ar atoms in contact with the
Br2 atom, but this geometry corresponds to a local minimum
of the neutralX state surface. In such cases, the neutral mini-
mum corresponding to the anion global minimum was al-
ways used to compute the ‘‘adiabatic’’ EAs and neutral elec-
tronic state splittings.

The results of the calculation of the neutral binding en-
ergies, zero point energies,DX– I , andDX– II are presented in
Tables IV and V, for Ar2–9Br and Ar2–19I, respectively. It is
interesting to note that for alln.1, the zero point energy of
the I state is greater than that of theX state, contrary to

intuition. This seems to be due to the steep repulsive wall of
the I 12 diatomic state, which causes the antisymmetric modes
to be more steeply curved in theI than in theX state. The
result is an increase inDX– I over what would be calculated if
the zero point energies were neglected.

We can compare theX– I splittings calculated using Eq.
~3! with the experimental results without reference to the
anion potential. This comparison is shown in Fig. 8. In the
cases where the two states are well resolved, the agreement
with experiment is quite satisfactory.

For n52 and 3 the splitting between theX and II states
may also be compared with experiment using Eq.~4!, as
shown in Fig. 9. For both Ar2–3Br @Fig. 9~a!# and Ar2–3I @Fig.
9~b!#, the theoreticalDX– II is greater than the experimental
value by about 5–15 cm21. The agreement is somewhat
worse for Ar2–3Br than for Ar2–3I. This discrepancy could
mean that the atomic spin–orbit splittingD is not indepen-
dent of the number of Ar atoms, as was assumed above. It is
known that the spin–orbit splitting of atoms in rare gas ma-
trices is different from that of the free atoms. For example,
Lawrence and Apkarian found that the I atom spin–orbit
splitting is decreased by about 3% or 5% in Xe or Kr matri-
ces, respectively.37 We observe a smaller decrease ofD in
the small clusters studied here: about 0.06–0.1 % in Ar2–3I
and 0.3–0.4 % in Ar2–3Br.

FIG. 8. Comparison of experimental and calculatedX– I state splittings for
~a! ArnBr and~b! ArnI. Solid circles: experimental. Open squares: calculated
as described in Sec. IV E.

FIG. 9. Comparison of experimental and calculatedX– II state splittings for
~a! ArnBr and~b! ArnI. Solid circles: experimental. Open circles: calculated
as described in Sec. IV E.
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Generally speaking, the open-shell interactions described
in this section are nonadditive, in the sense that they are of
the form of the additional terms in Eq.~2!. However, they
are not true many-body effects because they can be obtained
directly from the pair potentials, and do not introduce addi-
tional interactions between the Ar atoms in contrast to the
effects described in Sec. IV G. As pointed out by Sando and
co-workers,42 the open-shell potentials in then.1 clusters
can be considered to be additive as matrices rather than as
scalars, and we will refer to these interactions as ‘‘matrix
additive’’ effects in the rest of this discussion.

F. Electron affinities calculated from additive
potentials

The adiabatic EAs calculated from Eq.~5! using the ad-
ditive anion potentials@Eq. ~11!# and ‘‘matrix additive’’ neu-
tral potentials@Eq. ~17!# are given in Tables IV and V. These
are compared with the experimental EAs in Fig. 10 and 11.
First, notice that in both Ar2–9Br and Ar2–19I the calculated
EAs are significantly larger than the experimental results.
For Ar17–19I, the calculated EAs are almost 1000 cm

21 larger
than the experimental values. Furthermore, the calculated

EAs forn<17 are nearly linear as a function ofn. There is a
slight positive curvature due to the nonadditivity of the neu-
tral X state, and forn.17 the plot becomes flat in the case of
ArnI

2. On the other hand, the experimental EAs display a
significant negative curvature when plotted versusn. In ArnI,
flattening out atn517 is not observed. Clearly the model
potentials, as described so far, are not consistent with experi-
ment.

Before we consider many-body effects in the anion, let
us first rule out other possible explanations for this inconsis-
tency. We first consider the propagation of the uncertainties
in the pair potentials. The theoretical error bars shown in Fig.
10~b! and 11~b! were estimated by assuming an uncertainty
of 63 cm21 in the quantityea2ex for the pair potentials, as
discussed above, and multiplying this by the number of
Ar–X nearest neighbors. The uncertainty in the Ar–Ar po-
tential, and that due to ‘‘relaxation’’ of the geometry is ne-
glected. The shaded areas in the figures represent the experi-
mental uncertainties. The theoretical and experimental
uncertainty regions show no overlap forn.2. If a much
more conservative estimate of the uncertainties is desired, we
can consider the individual uncertainties in the diatomic well

FIG. 10. Comparison of experimental ArnBr electron affinities~EAs! with
those calculated from the pairwise additive model.~a! EA as a function ofn.
Solid circles: experimental EAs. Open squares: additive calculation.~b! Dif-
ference between calculated and experimental EAs as a function ofn. The
shaded region represents the experimental uncertainty. The error bars rep-
resent the uncertainty in the calculated EAs.

FIG. 11. Comparison of experimental ArnI EAs with those calculated from
the pairwise additive model.~a! EA as a function ofn. Solid circles: experi-
mental EAs. Open squares: additive calculation.~b! Difference between
calculated and experimental EAs plotted as a function ofn. The shaded
region represents the experimental uncertainty. The error bars represent the
uncertainties in the calculated EAs.
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depths, i.e., 9 cm21 for ArBr and ArBr2, and 18 cm21 for
ArI and ArI2. Even in this case, the experimental and theo-
retical error ranges overlap only for Ar2Br and Ar2–3I.

Furthermore, because the trends in the size dependence
of the observed EAs are so different from those of the cal-
culated EAs, it does not seem possible to modify the pair
potentials so as to simultaneously account for all the experi-
mental EAs. Any modification of the pair potentials would
result in the same more or less linear trend in theoretical
EAs.

One might also ask whether the population of local
minima affects the trends in the experimental EAs. We can
rule this out for Ar2–3X, for which there is only one possible
minimum geometry. Forn54 and 5 the only local minima
give calculated EAs much lower than the experimental re-
sult. For some of the larger clusters there may be local
minima that would be consistent with the experimental EAs.
However, we know from the diatomic spectra4 that the vi-
brational temperatures in the molecular beam are on the or-
der of 50 K. In light of this, a significant population of larger
clusters occupying local minima several hundred cm21

above the global minimum seems unlikely. For this reason,
and because it is not possible to account for the observed
EAs of the small clusters with alternate minima, it is very
unlikely that population of local minima could be the sole
explanation for the observed trends in the EAs.

Next we consider various nonadditive terms in the po-
tentials.

G. Many-body interactions

Nonadditive~or many-body! interactions fall into three
categories: those present in both the anion and the neutral,
those unique to the neutral, and those unique to the anion.
Many-body interactions present in both anion and neutral
include dispersion~Axilrod–Teller! and exchange interac-
tions. Interactions unique to the neutral include the ‘‘many-
body’’ effects due to the open-shell nature of the halogen
atom, which have already been discussed in Sec. IV E.
Many-body effects unique to the anion are those involving
the charge on the halide atom. These include nonadditive
induction effects, and the interaction of the halide charge
with multipole moments caused by exchange and dispersion
interactions between pairs of argon atoms.

The experimental observable, the EA, depends on the
difference between the anion and neutral potentials@see Eq.
~5!#, and is therefore most sensitive to many-body effects
that occur in the anion or neutral but not both. The following
discussion will show that many-body effects unique to the
anion have the largest effect on the trends in electron affini-
ties.

We will consider each nonadditive effect in turn, incor-
porating it into our simulated annealing procedure to test its
effect on cluster energetics at the minimum energy geometry.

1. Triple-dipole interaction

The leading term in the nonadditive dispersion energy,
the triple-dipole interaction, was first derived by Axilrod and

Teller,46 and independently by Muto.47 The form of the
triple-dipole potential is, for three atomsi , j , andk,

Vddd5C9

~3 cosu i cosu j cosuk11!

Ri j
3Rjk

3 Rik
3 , ~18!

whereui is the interior angle/ j ik , Ri j is the internuclear
distance between atomi and atomj , andC9 is a constant
depending only on the identities of the three atoms.C9 can
be calculated using semiempirical methods48 or by fitting to
ab initio calculations.49 However, because such results are
not available for the ArnX or Arn

2 systems considered here,
we use the approximation toC9 discussed by various
authors,48~b!,50

C95
3
2a ia jak

h ih jhk~h i1h j1hk!

~h i1h j !~h j1hk!~h i1hk!
, ~19!

whereai and hi are, respectively, the dipole polarizability
and average excitation energy of atomi .

A simple approximation tohi is, in atomic units,50,51

h i5SNi

a i
D 1/2. ~20!

HereNi is an effective number of electrons for a given atom.
Substituting Eq.~20! into Eq. ~19! gives a three-body ana-
logue of the Slater–Kirkwood formula51 for the C6 disper-
sion coefficient. In the treatment of Koutselos and
Mason,50~a! which we follow here,Ni is treated as an empiri-
cal parameter determined from the correspondingC6 two-
body dispersion coefficient for like atoms. Furthermore, the
values ofNi for the halide anions for which theC6 coeffi-
cients are not known are assumed to be the same as those of
the corresponding isoelectronic rare gases. Some theoretical
and empirical justification of the approximations involved in
this approach is given by Koutselos and Mason, who esti-
mate an uncertainty of 5%–10 % forC9 coefficients deter-
mined in this way.50~a! The parametersN anda as well as the
values ofC9 calculated from Eqs.~19! and~20! are given in

TABLE VI. Atomic dipole and quadrupole polarizabilities, effective num-
bers of electrons, andC9 coefficients for Ar–Ar–X interactions.

Atom a ~a0
3! C ~a0

5! N C9 ~eV Å9!

Ar 11.08a 27.11d 5.90e •••
Br2 35.2b 164d 6.70e 127
Br 20.6c ••• 6.2e 83
I2 52.7b 254d 7.79e 179
I 36.1c ••• 6.5e 129

aR. R. Teachout ad R. T Pack, At. Data3, 195 ~1971!.
bH. Coker, J. Phys. Chem.80, 2078~1976!.
cHandbook of Chemistry and Physics, 74th ed.~CRC, Boca Raton, 1994!,
pp. 10–198.
dM. V. K. Sastri, P. L. Narasimhulu, and K. D. Sen, J. Chem. Phys.80, 584
~1984!. Note that we use Buckingham’s definition@Adv. Chem. Phys.12,
107~1967!# of the quadrupole polarizabilityC, which is equal to half of the
quadrupole polarizability,aq , used by Sastriet al. @See E. A. Gislason and
M. S. Rajan, Chem. Phys. Lett.50, 251 ~1977! and references therein for
information on the various quadrupole polarizability conventions.#
eE. A. Mason and E. W. McDaniel,Transport Properties of Ions in Gases
~Wiley, New York, 1988!, pp. 533–534.
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Table VI. It should be noted that Eqs.~18! and ~19! are,
strictly speaking, valid only for atoms inS states.46~b!,50~a! In
extending their use toP-state halogens we are implicitly ne-
glecting the anisotropy of the halogen atom polarizability.

The triple-dipole interaction is repulsive for near equilat-
eral geometries. In the case of Ar2I

2, Vddd at the equilibrium
geometry is18.1 cm21, and 6.3 cm21 for Ar2I. For Ar2Br

2

and Ar2Br, the results are 9.0 and 5.7 cm21, respectively.
The larger values for the anionic clusters are mainly due to
their greater polarizabilities. The net result, then, is a de-
crease in the calculated EA by about 2–3 cm21 compared
with the additive potentials. This effect is of the same order
as the experimental uncertainty, but may be more significant
for larger clusters. In the calculations below on clusters with
n>3, only the Ar–Ar–X triple-dipole interactions are in-
cluded. The Ar–Ar–Ar interactions are neglected, because
we expect their energies to be nearly equal in the anion and
neutral.

It has been shown that higher-multipole three-body dis-
persion terms, such as the dipole–dipole–quadrupole (Vddq)
potential, may also contribute substantially to the three-body
dispersion energy.2 To ascertain their importance here, we
used the formulas of Koutselos and Mason50~a! for the higher
multipole coefficients, and the geometrical factors given by
Bell52 to estimateVddq for Ar2I

2 and Ar2I. At the equilib-
rium geometries of the clusters determined with additive po-
tentials, we obtain approximately 4 cm21 for Ar2I

2 and 3
cm21 for Ar2I. The resulting 1 cm21 shift in the EA is
smaller than the experimental uncertainty. Therefore,Vddq

and all higher multipole three-body dispersion terms were
neglected in subsequent calculations.

2. Three-body exchange

The second type of three-body interaction that occurs in
both anion and neutral clusters is the three-body exchange
interaction. This is caused by the exchange induced electron
charge distortion of a pair of atoms, which alters the pair’s
exchange interaction with a third atom. This effect is difficult
to model without recourse toab initio calculations, and has
been the subject of some controversy.2,3 As far as we are
aware, such calculations are not available for the
ArnBr/ArnBr

2 or ArnI/ArnI
2 systems studied here. However,

we can get an idea of the magnitude of this effect from anab
initio calculation on Ar3 by Chalasinski, Szczesniak, and
Cybulski.49 For equilateral Ar3 at internuclear separations
close to the equilibrium Ar2 bond length, they find the sum
of first and second order exchange three-body energies to be
21.5 cm21, or about 42% of the third order dispersion non-
additive energy~13.6 cm21!, and of opposite sign. If we
assume the exchange nonadditivity is a similar percentage of
the dispersion nonadditivity in the ArnBr/ArnBr

2 and
ArnI/ArnI

2 systems, we would anticipate a 2–4 cm21 nega-
tive contribution to the binding energies, and an approxi-
mately 1 cm21 difference between anion and neutral three-
body exchange energies. Because this effect is expected to be

small compared with our experimental uncertainties, and due
to the practical difficulty of accurately modeling it, it will be
neglected here.

3. Induction nonadditivity

The anion pair potentials are dominated by induction.
Likewise, we expect a rather large nonadditive effect to arise
from the interaction between multipole moments induced in
the rare gas atoms by the halide charge. In addition, there is
nonadditivity due to the polarization of the halide atom itself.
Because these effects are entirely absent in the neutral clus-
ters ~if we neglect the relatively small inductive effects due
to the permanent quadrupole moment of the neutral halogen!,
we expect the induction nonadditivity to have a large effect
on the EA.

A model for treating nonadditive effects in systems of
polarizable particles, first developed by Vesely,53 has been
extended and used extensively by various workers in com-
puter simulations of solvated ions54 and electrons,55 polar
liquids,56 and ionic clusters.18,56~d!,57 Our adaptation of this
model is as follows.

Each atom is characterized by a point charge~halide
only! and point dipole and quadrupole polarizabilities~halide
and rare gases! located at the nucleus. We assume that the
induced dipole of an atom depends linearly on the electric
field produced by the charges and multipoles of the other
atoms via the dipole polarizabilitya. We neglect the cubic
dependence on the electric field due to the hyperpolarizabil-
ity g and all higher terms. Likewise, we consider only qua-
drupoles induced by the field gradient due to the other atoms,
characterized by the quadrupole polarizabilityC, neglecting
the smaller contribution quadratic in the electric field via the
dipole–quadrupole hyperpolarizabilityB,58 and higher terms.

We also neglect the damping of the polarizabilities and
charges at short range due to exchange or charge transfer.
Such effects are believed to be significant in the case of
hydrogen bonding56~a! and in anions in ionic crystals.59 How-
ever, they are probably less important in the weakly bound
clusters considered here.

With these assumptions, the electric field at atomi is
given by60

Ea
~ i !5(

jÞ i
~2Ta

~ i j !qj1Tab
~ i j !mb

~ j !2 1
3Tabg

~ i j ! Ubg
~ j ! !, ~21!

and the electric field gradient is60

Eab
~ i ! 5(

jÞ i
~2Tab

~ i j !qj1Tabg
~ i j ! mg

~ j !2 1
3Tabgd

~ i j ! Ugd
~ j !!. ~22!

Here, following the notation of Buckingham,60 the subscripts
a, b, g, andd stand for any of the Cartesian components of
a vector or tensor, and repeated Greek subscripts imply sum-
mation over the three components. The permanent electric
charge is represented byqi ~21 for the halide and 0 for the
rare gases!, andma

( i ) andUab
( i ) are components of the induced

dipole and quadrupole moments, respectively, at atomi . We
use Buckingham’s definition of the quadrupole moment as a
traceless tensor.60 The multipole interaction tensors are de-
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fined byTab•••v
( i j ) 5¹a¹b•••¹v(1/Ri j ), whereRi j is the vector

from atom j to atomi . The induced dipole at atomi is then
given by60

ma
~ i !5a iEa

~ i ! , ~23!

and the induced quadrupole is60

Uab
~ i ! 5CiEab

~ i ! , ~24!

whereai andCi are the dipole and quadrupole polarizabil-
ities, respectively, of atomi . The values ofa andC used
here are given in Table VI.

At each time step in the simulated annealing procedure,
the induced moments are calculated iteratively from Eqs.
~21!–~24!. At the first time step, the field and field gradient
due to the halide permanent charge are initially calculated
from Eqs. ~21! and ~22!. Then the induced moments are
found from Eqs.~23! and~24!, and substituted back into Eqs.
~21! and ~22!. The process is repeated until the magnitudes
of the induced moments do not change by more than one part
in 10210 with successive iterations. It is found that the mo-
ments converge about twice as fast if the individual moments
are immediately substituted into Eqs.~21! and ~22! for sub-
sequent calculations during a given iteration, rather than
‘‘saved’’ until the next iteration. For subsequent molecular
dynamics~MD! time steps, the algorithm is initiated with the
induced moments saved from the previous MD step. This
saves some computer time.

The total induction energy is then given by

Vind,total5Vqm1VqU1Vmm1VmQ1VUU1Vself, ~25!

where the first five terms on the right-hand side are the
charge–dipole, charge-quadrupole, dipole–dipole, dipole–
quadrupole and quadrupole–quadrupole interaction energies.
The final term is the energy required to create the induced
dipoles and quadrupoles, given by61,62

Vself5(
i

S ma
~ i !ma

~ i !

2a i
1

Uab
~ i ! Uab

~ i !

6Ci
D , ~26!

where the sum runs over all atoms. By using Eqs.~21!–~24!
for one of each of the dipoles and quadrupoles in Eq.~26!
and substituting the explicit expressions for the interaction
energies60 and Eq.~26! into Eq. ~25!, one can show that Eq.
~25! simplifies to

Vind,total5
1
2Vqm1 1

2VqU5(
i

(
jÞ i

qi~2 1
2Ta

~ i j !ma
~ j !

1 1
6Tab

~ i j !Uab
~ j ! !. ~27!

This equation gives the total induction energy of the cluster.
However, part of this energy is already implicitly included in
the Ar–X2 pair potential. In order to extract the nonadditive
portion, we calculate the induction energy for each Ar–X2

pair, neglecting the other Ar atoms in the cluster, using the
same iterative method. The sum of the pair induction ener-
gies is then subtracted from Eq.~27! to give the nonadditive
induction energy:

Vind5Vind,total2Vind,pair. ~28!

In practice, due to the computational ‘‘expense’’ of this
iterative calculation, a simpler model was employed for the
initial simulated annealing procedure. In the simpler model,
the interaction energy between dipoles directly induced in
the rare gas atoms by the halide charges is calculated.63 The
minimum energy geometries found with the simpler model
were then optimized using the full iteratively calculated in-
duction model described above.

The results of the calculation for Ar2I
2 and Ar2Br

2 show
that the nonadditive induction effect is indeed quite large.
For Ar2Br

2, for example,Vind is 35.3 cm21. The result for
Ar2I

2 is somewhat smaller, because of the larger Ar–X2

internuclear distance. The nonadditive induction energy is
always found to be positive, showing that it is dominated by
the repulsion between adjacent induced multipoles on the Ar
atoms. The dipole term of Eq.~27! contributes 32.7 cm21 to
the total in Ar2Br

2, and the quadrupole term contributes 2.6
cm21. Thus, it does appear necessary to include the induced
quadrupole effect, usually neglected in this type of simula-
tion, for accurate calculation of the binding energies. The
results for the larger clusters are discussed below.

4. Exchange and dispersion multipoles

As first described by Dick and Overhauser,64 the ex-
change repulsion between two closed-shell atoms produces a
buildup of negative charge near the nuclei and a depletion of
electron density between the nuclei. At large distances from
the pair of atoms this distortion of the electron clouds is
equivalent to a set of multipole moments, as discussed by
Jansen.65 If the atoms are identical, the first nonvanishing
moment is a quadrupole. There is also a quadrupole, of op-
posite sign, arising from the dispersion interaction between
two atoms. At the usual van der Waals distances, the disper-
sion contribution is somewhat smaller than the exchange
contribution.66

In the case of ArnBr
2 and ArnI

2, a three-body effect
then arises from the interaction of the halide charge with the
Ar2 exchange/dispersion multipoles. This is another type of
many-body interaction that is present in the anionic but not
in the neutral clusters, and is therefore expected to have a
significant effect on the EA. As with induction, we expect
the interaction of the permanent quadrupole of the neutral
halogen atom with the exchange/dispersion moments to be
negligible.

In their studies of the Ar2–HCl, –DCl, and –HF sys-
tems, Hutson and coworkers10 have found that the interaction
of the exchange/dispersion quadrupole of the Ar2 unit with
the permanent multipoles of the HX molecule is quite impor-
tant. This work was mainly concerned with the interpretation
of the vibration–rotation spectra7,8 of the clusters. However,
they also found the contribution to the binding energy to be
significant. Chalasinski and others67 have found these con-
clusions about the importance of the exchange quadrupole
effect on the Ar2HX potential energy surfaces to be qualita-
tively consistent with theirab initio calculations. In recent
work more closely related to our own, Burclet al. have ex-
tracted information about the exchange multipole energy
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from ab initio calculations on Ar2Cl
2.68 These authors cal-

culated this effect to be212.8 cm21 near the equilibrium
geometry of Ar2Cl

2. In this light we expect the exchange/
dispersion multipole contribution to the nonadditive binding
energies of our ArnBr

2 and ArnI
2 clusters also to be quite

significant.
Jansen derived a simple expression for the exchange

quadrupole using an effective one electron model for the
atomic charge distributions.65 In this approach, the electronic
charge density of an atom is approximated by a single
Gaussian function,

r i~r !52
ueub3

p3/2 e2b2uRi2r u2, ~29!

whereb is the Gaussian range parameter,Ri is the position
of the nucleus of atomi , andr is the position of the effective
electron. Then the atomic wave function is defined as

w i~r !5Ur i~r !e U1/2. ~30!

The zero-order wave function of a pair of atoms,i and j , is
taken to be the antisymmetrized product of the two atomic
wavefunctions~normalized to 2!:

C i j
0 ~r ,r 8!5

1

~12Si j
2 !1/2

@w i~r !w j~r 8!2w i~r 8!w j~r !#.

~31!

Here r and r 8 are the positions of the two electrons, andSi j
is the overlap integral, which for like atoms with Gaussian
wave functions is given by

Si j
25exp~2b2Ri j

2 /2!,

whereRi j is the internuclear separation between the atoms.
Then, taking the expectation value of the quadrupole mo-
ment operator with wave function~31!, a simple expression
for the cylindrically symmetric exchange quadrupole is
found:65

Uex~Ri j !52
ueuRi j

2

2 S Si j
2

12Si j
2 D . ~32!

In Jansen’s original treatment, the range parameterb was
estimated from the long range dispersion interactions, and
assumed to be valid for short range exchange interactions.
This method of estimatingb is now believed to significantly
overestimate the exchange quadrupole.69,70An approach that
has been used to improve the accuracy of the model is to fit
the one-electron functional form for the exchange quadru-
pole to the results of accurateab initio calculations, to arrive
at a more reasonable value ofb.10,69 Here, we shall use the
value b50.936 Å21, derived in this way by Hutson and
co-workers10~c! from a self-consistent field~SCF! calculation
of the quadrupole moment of Ar2.

The problem now arises of how to calculate the interac-
tion energy of the exchange quadrupole with the halide
charge. The simplest way is to represent the exchange charge
distribution with a point quadrupole, calculated from Eq.
~32!, located at the midpoint between the two Ar atoms. The

energy is then obtained from the standard expression for a
charge–quadrupole interaction.60 However, because the typi-
cal halide–Ar2 distances in the clusters are on the same order
as the Ar–Ar distance, the point quadrupole representation
overestimates the magnitude of the interaction. The point
quadrupole representation was used by Hutsonet al. in their
work on Ar2–HCl and –DCl, and was found by them to
somewhat overcorrect the pairwise additive
potential.10~a!,10~b! In more recent work on Ar2–HF, Ernesti
and Hutson10~c! proposed a distributed dipole representation:
The Ar2 exchange charge distribution is represented by op-
posed point dipole moments at the two Ar nuclei, parallel to
the internuclear axis, with magnitudes chosen to give the
same overall quadrupole moment as Eq.~32!. Ernesti and
Hutson found the distributed dipole representation superior
to the point quadrupole representation for Ar2–HF, but noted
that it somewhat underestimated the electric field of the true
charge distribution.10~c!

The difficulty with both of these approaches arises from
the use of a multipole representation at short range. There-
fore, it seems logical to attempt a more direct calculation of
the interaction of the exchange charge distribution with the
halide charge. To do this, we form an effective charge
density—the part of the charge density that contributes to the
exchange quadrupole—by subtracting the atomic charge
densities~29! from the charge density of the antisymme-
trized wave function~31!:

reff~r !52ueu E uC i j
0 ~r ,r 8!u2dr 82r i~r !2r j~r !

52
ueuSi j

2

12Si j
2 S b

p1/2D 3@e2b2uRi2r u21e2b2uRj2r u2

22e2b2uRC2r u2#. ~33!

HereRC51
2~Ri1Rj ! is the midpoint between the two Ar nu-

clei. We see that the effective charge density is the sum of
two negative Gaussian charge distributions located at the nu-
clei, and a positive Gaussian distribution, twice as large, at
RC .

64 If we approximate the halide with a point charge at
R0, the Coulomb interaction energy is then found to be71

Vec5(
i, j

e2Si j
2

12Si j
2 Ferf~bRi0!

Ri0
1
erf~bRj0!

Rj0

22
erf~bRC0!

RC0
G , ~34!

whereRi0, Rj0, andRC0 are the distances of the halide from
the Ar nuclei and the midpoint between the nuclei, respec-
tively, andi and j run over the Ar atoms. The error functions
in Eq. ~34! can be easily evaluated using standard
subroutines.72 In the limit bR→`, erf(bR)→1. So at long
range, Eq.~34! is equivalent to the Coulomb interaction of
the halide charge with negative point charges
d52ueuSi j

2 /(12Si j
2 ) at the Ar nuclei, and a positive point

charge,12udu, at RC .
65 In order to prevent nonphysical be-
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havior of Eq.~34! for small values ofRC0 ~near linear ge-
ometries!, Vec is cut off for Ar–Ar separations greater than a
certain value, typically 6.5 Å.

We should discuss the approximations implicit in Eq.
~34!. First, the nuclear charges are, in effect, approximated
by Gaussian distributions with the sameb parameter as the
atomic electron densities. Thus, effects of nuclear deshield-
ing are not included in Eq.~34!. Second, the approximation
of the halide by a point charge will underestimate the extent
of overlap effects and hence tend to slightly overestimate the
magnitude of the interaction energy. This deficiency could be
corrected if more were known about the charge densities of
the halide atoms. Finally, and most importantly, we are still
working within the Gaussian one-electron approximation. A
single Gaussian function is known to be a rather poor ap-
proximation to the true electron density of an atom.70 This
problem could be overcome by using a more accurate model
of the Ar2 charge distribution, such as the result of anab
initio calculation with Gaussian type basis functions. The
method of Gaussian multipoles developed by Wheatley71

could then be used to calculate the Coulomb energy. Despite
the limitations of the present model, we nonetheless expect

Eq. ~34! to give a more accurate value ofVec than either the
point quadrupole or distributed dipole representations.

The three models ofVec are compared for Ar2X
2 in Fig.

12. In the figure, the Ar–Ar distance is held constant at the
equilibrium value of the Ar2 molecule, and the Ar–Ar axis is
kept perpendicular toRC0, as the halide–Ar2 distance is var-
ied. It can be seen that at large separations, the three models
approach each other, as expected. However, at separations
near the equilibrium structures of Ar2I

2 and Ar2Br
2, the dif-

ferences among the three models are quite significant. For
example, atRC053.61 Å, corresponding to Ar2I

2, Eq. ~34!
givesVec5215.0 cm21, compared with218.0 cm21 for the
point quadrupole model, and212.6 cm21 for the distributed
dipole representation. The differences among the three mod-
els at the equilibriumRC0 of Ar2Br

2 ~3.28 Å! are even more
pronounced. We conclude that at the interatomic distances
considered here, it is important to use an accurate represen-
tation of the exchange charge distribution to calculateVec. In
the remainder of this work, we shall use Eq.~34! for Vec.

We also need to consider the multipole moments in-
duced in the rare gas atoms by dispersion. Hunt73 has devel-
oped a model for the dispersion induced dipole and quadru-
pole moments in terms of atomic polarizabilities and
dispersion coefficients. The average dipole moment induced
on atomi by the dispersion interaction with other like atoms
is given by

m i ,disp5Cm(
jÞ i

R̂i j

Ri j
7 , with Cm5

3

2

C6B

a
, ~35!

whereR̂i j is the unit vector pointing from atomj to atomi ,
C6 is the Ar–Ar dispersion coefficient,a is the dipole polar-
izability, andB is the dipole–quadrupole hyperpolarizability.
The components of the dispersion induced quadrupole mo-
ment on atomi are given by

Uab
i ,disp52CU(

jÞ i

Tab
~ i j !

2Ri j
3 , with CU5

1

4

C6B

a
, ~36!

whereTab
( i j )5¹a¹b(1/Ri j ). For example, in the special case

of two atoms lying on theZ axis, the quadrupoles have cy-
lindrical symmetry, withUzz

i ,disp 5 2CU /Ri j
6 , and Qxx

i ,disp

5 Uyy
i ,disp5 2 1

2Uzz
i ,disp. Following Ernesti and Hutson,10~a! the

values ofCm andCU were found using theC6 constant from
the Aziz HFDID ~Hartree–Fock dispersion individually
damped! 1 potential,29 and the ratioB/a from the calculation
of Maroulis and Bishop.74 We obtainCm51252 ea0

8 and
CU5208.6 ea0

8. The total dispersion induced dipoles and
quadrupoles are calculated from Eqs.~35! and ~36! for each
Ar atom. Then the charge–dipole interaction energy,Vddis

and the charge–quadrupole energy,Vqdis, are computed
from the standard electrostatic formulae.60 We denote the
total charge-dispersion multipole energy byVmdis 5 Vddis

1Vqdis.
We should note that this calculation is carried out inde-

pendently of the nonadditive induction energy calculation
described in the previous section~Sec. IV G 3!. Therefore,
interactions between the electrostatically induced multipoles
and the exchange/dispersion induced multipoles have been

FIG. 12. Comparison of three models of the exchange quadrupole–charge
interaction in Ar2X

2 clusters. The Gaussian range parameterb is 0.936 Å,
and the Ar–Ar distance is fixed at 3.7565 Å.Rc is the distance between the
halide nucleus and the Ar–Ar midpoint. Dashed line: point quadrupole
model. Dotted line: distributed dipole model. Solid line: calculated from Eq.
~34!. The vertical lines represent the Ar–Br2 and Ar–I2 dimer equilibrium
distances.
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neglected. This is reasonable because the exchange/
dispersion multipoles are about an order of magnitude
smaller than the charge induced multipoles, and, therefore,
the interactions of the exchange/dispersion multipoles with
the charge are much larger than their interactions with the
charge induced multipoles.

The charge–dipole energy,Vddis is generally positive
and about 30% as large asVec. This proportion is qualita-
tively consistent with the calculations of Lacey and Byers
Brown66 and with the results of Ernesti and Hutson.10~c!

Vqdis is negative, and only about 5% as large asVddis. For
example, in Ar2Br

2, the dispersion dipole energy is16.0
cm21, and the dispersion quadrupole energy is20.3 cm21.
This may be compared with the exchange charge energy of
220.3 cm21. Thus we see that the dispersion dipole makes a
nonnegligible contribution to the nonadditive energy,
whereas the dispersion quadrupole could be neglected with-
out any significant loss of accuracy.

Complete results for the larger clusters are discussed in
the next section.

H. Electron affinities calculated with many-body
potentials

In order to assess the importance of the various many-
body effects mentioned above, we reoptimized the minimum
energy geometries found from the simulated annealing pro-
cedure with the additive potentials, successively adding the
many-body terms, in order of their relative magnitudes.

The first nonadditive term considered was the multipole
induction energy; the anion potential was then found from

ea5min~VArX1VArAr1Vind!, ~37!

where the right-hand terms are the pairwise additive argon–
halide and argon–argon potentials, and the many-body mul-
tipole induction potential. The neutral potential was identical
to that used in the calculation in Sec. IV E:

eX5min~VArnX
1VArAr !, ~38!

whereVArnX
is the ‘‘matrix additive’’ X state potential de-

scribed in Sec. IV E. We refer to the electron affinities cal-
culated from Eqs.~37!, ~38!, and~5! as EAind .

We next considered the effect of addition of the
exchange–charge and multipole dispersion energies. The an-
ion binding energies are then

ea5min~VArX1VArAr1Vind1Vec1Vmdis!, ~378!

and the neutral binding energies are still given by Eq.~38!.
The electron affinities calculated from Eqs.~378!, ~38!, and
~5! are referred to as EAind1ec1mdis.

Finally, the Axilrod–Teller term was included in both
the anion and neutral potentials to give

ea5min~VArX1VArAr1Vind1Vec1Vmdis1Vat
anion!,

~379!

eX5min~VArnX
1VArAr1Vat

neutral!. ~388!

The EAs calculated from Eqs.~379!, ~388!, and ~5! are re-
ferred to as EAind1ec1mdis1at. The binding energies calcu-
lated from Eqs.~379! and ~388! and their components are
shown graphically in Figs. 13 and 14.

The anion and neutral binding energies calculated from
Eqs.~37!, ~378!, and~38!, and from Eqs.~379! and~388! are
given, along with the corresponding zero-point energies, in
Tables VII and VIII. The theoretical electron affinities EAind ,
EAind1ec1mdis and EAind1ec1mdis1at are given in Tables IX
and X. The deviations of the theoretical EAs from the ex-
perimental values are shown in Figs. 15 and 16.

It is important to note that the many-body termsVind ,
Vec, Vmdis andVat

anionall depend on theabsolutevalues of the
Ar–X2 distances. Therefore, we must consider the uncer-
tainties in these terms due to the absolute uncertainty inRm

in the pair potentials, which, as mentioned in Sec. IV A, is
60.2 Å for both ArBr2 and Ar2. In order to estimate the
uncertainties in the many-body terms, we calculated the
changes in these terms in the Ar2Br

2 and Ar2I
2 systems with

the Ar–Ar distance fixed at the Ar2 equilibrium value, as the
Ar–X2 distances were varied over60.2 Å about the ArX2

equilibrium values. To estimate these uncertainties in the
larger clusters, the Ar2X

2 uncertainties were multiplied by
the number of nearest neighbor Ar–Ar pairs in contact with

FIG. 13. Calculated contributions to theX state binding energies~BE! of ~a!
ArnBr and ~b! ArnI neutral clusters. Solid circles: total BE. Open squares:
Ar–Br contribution. Open circles: Ar–Ar contribution. Open diamonds:
Axilrod–Teller triple-dipole contribution.
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the halide. The uncertainties introduced into the calculated
EAs were found to be significantly larger than those due to
the uncertainty inea2eX in the pair potentials. These uncer-
tainties are displayed as error bars in Figs. 15 and 16.

The addition of the many-body induction term signifi-
cantly decreases the EA compared with the additive calcula-
tion. @Compare Figs. 15~a! and 16~a! with Figs. 10 and 11.#
EAind is closer to the experimental values than EAadd, but is
somewhat overcorrected. This is clearest in the ArnI clusters,
in which EAind lies well below the experimental uncertainty
region ~shaded areas in Figs. 15 and 16! for n56, 7 and
9–19. Thus, the ArnI results clearly indicate the need for
additional nonadditive terms. In the ArnBr clusters, the ex-
perimental and theoretical EA uncertainty regions overlap
except forn58 and 9, but the EAind values are all system-
atically lower than the experimental EAs, again suggesting
that induction effects alone decrease the electron affinity by
too much.

FIG. 14. Calculated contributions to the binding energies of~a! ArnBr
2 and

~b! ArnI
2 anions. Solid circles: total BE. Open squares: Ar–Br2 contribu-

tion. Open circles: Ar–Ar contribution. Open triangles: nonadditive induc-
tion. Crosses: exchange charge and multipole dispersion. Open diamonds:
triple-dipole dispersion.

TABLE VII. Calculated ArnBr
2 anion and ArnBr neutralX state binding

energies and zero point energies, including nonadditive terms. IND: nonad-
ditive induction. EC: exchange charge. MDIS: dispersion multipole. AT:
Axilrod–Teller triple-dipole dispersion. Energies are in cm21.

n

IND IND1EC1MDIS
IND1EC1MDIS1

AT ~anion! AT ~neutral!

ea v0
a ea v0

a ea v0
a eX v0

X

1 438.8 20.7 438.8 20.7 438.8 20.7 133.1 15.6
2 942.4 53.7 955.9 56.1 946.8 55.0 343.7 41.7
3 1515.3 98.5 1555.7 105.1 1528.9 102.3 646.1 83.3
4 2081.3 142.6 2148.4 153.2 2103.9 148.8 950.0 124.7
5 2640.9 185.0 2734.3 199.0 2672.3 193.5 1255.5 164.7
6 3273.3 236.7 3402.4 255.2 3315.3 247.6 1643.6 207.8
7 3819.9 278.3 3974.4 300.4 3871.5 291.8 1978.7 262.0
8 4434.4 326.4 4620.2 351.6 4494.4 341.1 2385.1 307.4
9 5029.0 367.2 5238.7 395.2 5091.0 381.9 2783.7 349.6

TABLE VIII. Calculated ArnI
2 anion and ArnI neutralX state binding en-

ergies and zero point energies, including nonadditive terms. IND: nonaddi-
tive induction. EC: exchange charge. MDIS: dispersion multipole. AT:
Axilrod–Teller triple-dipole dispersion. Energies are in cm21.

n

IND IND1EC1MDIS
IND1EC1MDIS

1AT ~anion! AT ~neutral!

ea v0
a ea v0

a ea v0
a eX v0

X

1 369.4 17.3 369.4 17.3 369.4 17.3 151.6 14.6
2 814.6 48.4 825.2 50.4 817.0 49.2 379.0 40.6
3 1338.4 90.2 1369.9 96.0 1345.7 92.6 699.7 81.4
4 1859.9 132.3 1912.3 141.5 1871.5 136.4 1020.8 122.1
5 2378.0 171.8 2451.2 184.0 2393.7 177.7 1342.6 161.6
6 2967.4 221.9 3066.3 239.4 2985.9 229.2 1740.5 203.9
7 3476.4 261.5 3595.8 280.9 3499.6 270.5 2080.2 251.2
8 4040.0 306.9 4179.8 330.7 4062.8 316.2 2482.0 292.6
9 4567.5 344.5 4721.2 366.2 4585.0 352.0 2859.1 325.1
10 5102.2 386.5 5285.1 415.0 5131.7 398.9 3246.9 378.1
11 5623.9 423.4 5821.0 456.8 5647.2 436.2 3627.1 415.7
12 6197.5 475.9 6427.8 510.4 6233.0 488.9 4047.9 470.3
13 6818.0 516.8 7068.8 554.8 6847.5 528.7 4533.9 513.4
14 7363.8 547.9 7625.0 593.4 7371.8 557.4 4957.0 554.8
15 8021.4 610.6 8322.8 649.3 8038.4 617.9 5465.2 619.4
16 8615.8 683.1 8973.2 725.1 8673.8 694.6 5908.9 667.5
17 9232.3 763.9 9647.9 808.9 9336.7 781.2 6361.9 747.4
18 9737.0 818.1 1 0159.9 864.8 9840.0 836.3 6810.4 802.8
19 1 0247.0 872.0 1 0676.5 921.2 1 0347.4 891.3 7254.8 855.9

TABLE IX. Ar nBr electron affinities calculated with various non-additive
terms. EAind nonadditive induction term only. EAind1ec1mdis nonadditive in-
duction, exchange charge, and multipole dispersion terms. EAind1ec1mdis1at :
induction, exchange charge, multipole dispersion, and triple-dipole disper-
sion terms. Energies are in cm21.

n EAind EAind1ec1mdis EAind1ec1mdis1at

0 27 129.2 27 129.2 27 129.2
1 27 429.8 27 429.8 27 429.8
2 27 710.8 27 721.9 27 718.9
3 27 968.5 28 002.2 27 993.0
4 28 218 28 275 28 259
5 28 460 28 540 28 517
6 28 681 28 792 28 761
7 28 897 29 029 28 992
8 29 088 29 249 29 205
9 29 271 29 453 29 404
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Inclusion ofVec andVmdis in the calculation brings the
theoretical EAs closer to the experimental results.@See Figs.
15~b! and 16~b!.# In the case of ArnBr, EAind1ec1mdis lies
within the experimental error bars in all cases except for
Ar3Br, which is overcorrected by about 9 cm

21. But even in
this case, the model potential and experimental uncertainty
regions overlap. For the ArnI clusters, EAind1ec1mdis is over-
corrected by 3.8–20.1 cm21 for n52–5, which is outside the
experimental error bars~the shaded region in Figs. 15 and
16!. For 6<n<19, EAind1ec1mdis lies within experimental
uncertainties except forn513–15 andn517. However, as in
the ArnBr clusters, the theoretical and experimental uncer-
tainty ranges overlap in all cases for ArnI.

Inclusion of the Axilrod–Teller term brings the theoreti-
cal EAs closer to experiment for the smaller clusters, but
overcorrects somewhat for some of the larger clusters.@See
Figs. 15~c! and 16~c!#. Now for the ArnBr clusters
EAind1ec1mdis1at lies within the experimental uncertainties
for all cases exceptn59. For Ar2–4I addition of the Axilrod–
Teller term brings the theoretical EA closer to the experi-
mental result, but is still a few wavenumbers above the ex-
perimental error bars. Forn55–10, 17, and 18, the
theoretical result is within experimental uncertainties, but
lies below the uncertainty region forn511–16 and 19. But,
again, the theoretical and experimental error bars overlap in
all cases. Thus, inclusion of the triple-dipole term appears to
help somewhat for the smaller clusters, but, because of the
uncertainties inVind andVec1 Vmdis it is not possible to draw
definite conclusions about the importance of the Axilrod–
Teller term from the present results. To do so would require
more precise knowledge ofRm in the pair potentials.

V. CONCLUSIONS

We have obtained experimental electron affinities and
electronic structure information from the ZEKE and PDTP
spectra of Ar2–9Br

2 and Ar2–9I
2. We have compared these

with electronic state splittings and EAs calculated from both
pairwise additive and nonadditive model potentials. The fol-
lowing conclusions can be drawn from this work.

~1! The first-order degenerate perturbation theory treat-
ment of the open-shell neutral potentials described in Sec.
IV E is accurate enough to account for theX– I electronic
state splittings observed in Ar2–3Br and Ar2–7I, within ex-
perimental uncertainties.~See Fig. 8!. However, this model
somewhat overestimates theX– II state splittings for
Ar2–3Br and Ar2–3I, possibly indicating that the spin–orbit
splitting decreases as Ar atoms are added around the halo-
gen.~See Fig. 9.!

~2! A pairwise additive model of the anion potentials is
completely inadequate to account for the experimentally
measured EAs.~See Figs. 10 and 11.! Nonadditive effects in
the anion are clearly very important.

~3! The many-body induction effect is the most impor-
tant nonadditive effect in the anion potential. Inclusion of
Vind accounts for most of the discrepancy between the addi-

FIG. 15. Differences between calculated and experimental EAs for ArnBr,
plotted as a function ofn, including various three-body terms:~a!
EAind2EAexpt, ~b!EAind1ec1mdis2 EAexpt, ~c!EAind1ec1mdis1at2 EAexpt. The
shaded region represents the experimental uncertainty. The error bars rep-
resent the uncertainty in the calculated EAs.

TABLE X. Ar nI electron affinities calculated with various non-additive
terms. EAind : nonadditive induction term only. EAind1ec1mdis: nonadditive
induction, exchange charge, and multipole dispersion terms.
EAind1ec1mdis1at : induction, exchange charge, multipole dispersion, and
triple-dipole dispersion terms. Energies are in cm21.

n EAind EAind1ec1mdis EAind1ec1mdis1at

0 24 673.3 24 673.3 24 673.3
1 24 888.3 24 888.3 24 888.3
2 25 095.4 25 103.9 25 102.6
3 25 286.6 25 312.3 25 308.1
4 25 474 25 518 25 510
5 25 660 25 721 25 708
6 25 828 25 909 25 893
7 25 995 56 095 26 073
8 26 138 26 254 26 231
9 26 268 2 6400 26 372
10 26 410 26 565 26 537
11 26 537 26 701 26 673
12 26 680 26 875 26 840
13 26 798 27 011 26 972
14 26 903 27 119 27 086
15 27 039 27 302 27 248
16 27 156 27 472 27 411
17 27 323 27 693 27 614
18 27 336 27 712 27 669
19 27 431 27 811 27 731
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tive and experimental EAs, but somewhat overcorrects, es-
pecially in the case of ArnI. This result is consistent with the
work of Berkowitz and others18 who found a nonadditive
inductive effect to be very important to model the experi-
mental BEs of Br2~H2O!n clusters. We also note that, al-
though not explicitly discussed by Bowen and coworkers in
their paper on ArnO

2 clusters,16 it seems likely that the non-
additive induction effect may in large part account for the
nonlinearity of the binding energies as a function ofn ob-
served by them forn,12. ~See Fig. 4 of Ref. 16.!

~4! The exchange/dispersion multipole term also plays
an important role. In both the Ar2–9Br

2 and Ar2–19I
2 clusters

inclusion of theVec andVmdis terms in the EA calculation
brings the calculated EAs within the experimental error bars,
when the uncertainty in the size of the induction effect due to
the uncertainty of the pair potential bond length is taken into
account.

~5! Inclusion of the triple-dipole dispersion effect in the
anion and neutral potentials appears to slightly improve the
agreement with experiment for the smaller clusters
~Ar2–5Br

2 and Ar2–5I
2!, but makes the fit slightly worse for

the larger clusters. However, due to the uncertainties inRm

in the Ar–X2 pair potentials, nothing conclusive can be said
about the role of the triple-dipole dispersion effect in these

clusters on the basis of our results. Furthermore, we cannot
draw any conclusions about the role of three-body exchange
effects or higher-order multipole dispersion terms from the
present work.

Overall, this type of detailed energetic study of many-
body effects is complementary to studies of nonadditive ef-
fects via high resolution spectroscopy. In this type of experi-
ment we are able to directly measure the difference between
anion and neutral binding energies, allowing a direct com-
parison of experimental observables with model potentials
including nonadditive effects. However, due to limited reso-
lution and uncertainties in the pair potentials this experiment
is not sensitive to the most subtle nonadditive effects, such as
the triple-dipole dispersion energy. This is in contrast to the
high resolution spectroscopic studies of the Ar2–HX
systems,3,7–10 which provide precise values of molecular
constants. Comparison of such results with nonadditive
model potentials is more difficult, but can in principle pro-
vide more precise information on nonadditive effects.

Further theoretical work needs to be done to interpret the
vibrational structure observed in the smaller clusters
~Ar2–3Br

2 and Ar2–3I
2! studied here. These spectra present

an opportunity to test the various methods of dynamical cal-
culations that have been developed for weakly bound
clusters,75 and such studies would be welcome.

In the future, we hope to observe the ZEKE spectrum of
Ar2Cl

2. This would allow direct comparison with the re-
cently publishedab initio study of this system by Burcl
et al.68 Also, the Ar2Cl neutral cluster would present a more
tractable problem forab initio theorists than the larger halo-
gen containing clusters studied in the present work.
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