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ABSTRACT
High-resolution anion photoelectron spectroscopy of the ZrO3H2

− and ZrO3D2
− anions and complementary electronic structure calcula-

tions are used to investigate the reaction between zirconium dioxide and a single water molecule, ZrO2
0/− + H2O. Experimental spectra of

ZrO3H2
− and ZrO3D2

− were obtained using slow photoelectron velocity-map imaging of cryogenically cooled anions, revealing the presence
of two dissociative adduct conformers and yielding insight into the vibronic structure of the corresponding neutral species. Franck–Condon
simulations for both the cis- and trans-dihydroxide structures are required to fully reproduce the experimental spectrum. Additionally, it was
found that water-splitting is stabilized more by ZrO2 than TiO2, suggesting Zr-based catalysts are more reactive toward hydrolysis.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037636., s

I. INTRODUCTION

Zirconium dioxide (ZrO2) is an extensively studied mate-
rial with widespread applications in medicine,1–3 gas-cleaning
technology,4 ceramics,5–7 corrosion-resistant materials,8–10 and het-
erogeneous catalysis.11 As in the case of titania (TiO2), photosensiti-
zation of water on a ZrO2 electrode has inspired the development of
ZrO2 based technologies to exploit its photocatalytic properties for
solar-powered hydrogen fuel cells.12–16 Despite significant efforts,
these technologies are not yet viable, in part, due to the limited
mechanistic knowledge needed for further development.17 Specif-
ically, a more complete understanding of the interaction between
ZrO2 and water is required to develop these devices. Here, we

present high-resolution photoelectron spectra of the ZrO3H−2 anion
in tandem with electronic structure calculations, providing insight
into the simplest reaction of ZrO0/−

2 with water.
There is a vast body of work on the surface chemistry of metal

oxides aimed at understanding water oxidation,18–25 with a consid-
erable number of studies specifically probing the ZrO2 surface.26–30

From this body of work, it has become clear that defect sites play
a critical role in the catalytic process;31–36 thus, investigating the
interaction of water molecules at these sites is crucial for gaining
insights into the water splitting mechanism. Such studies are chal-
lenging, however, owing to the difficulty of synthesizing and prob-
ing molecular-scale structures embedded with low density on bulk
surfaces.37–45 Overcoming the hurdles of generating and controlling
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defect sites can be bypassed by preparing and studying gas-phase
metal oxide clusters, as these species show structural motifs that
mimic the geometries of common defect sites.46–48 Furthermore,
the relatively small size of these systems makes them computa-
tionally tractable, enabling experimentalists and theorists to deter-
mine their electronic structure, geometries, and catalytic reaction
mechanisms—a task not viable from bulk studies alone.49–53 There
has been substantial progress made in understanding the structure
and reactivity of small metal oxide clusters,54–59 including several
studies on the interaction between titanium dioxide clusters and
water molecules.60–63

Of particular relevance is the work of Zheng and co-workers,
who performed anion photoelectron spectroscopy (PES) on the
anionic (TiO2) (H2O)0–7 clusters and inferred that dissociative
adsorption of water occurs to form a hydroxide species.61 We
recently reinvestigated the (TiO−2 ) (H2O) system using slow electron
velocity-map imaging of cryogenically cooled anions (cryo-SEVI),
a high-resolution form of anion PES, coupled with detailed com-
putational simulations.64 That work shows evidence that the disso-
ciative adduct, cis-dihydroxide TiO(OH)−2 , is a planar C2v structure
that is energetically favored over a molecularly adsorbed complex
and other lower-symmetry dissociative species.

Though still a group IV metal oxide, ZrO2 has been stud-
ied less extensively than titania.65–71 Within the bulk framework,
Sayama and Arakawa17 initiated significant interest in the field
with the discovery of the photocatalytic decomposition of water on
pure ZrO2 powder following UV irradiation. Later, it was shown
that adding a carbonate-based salt such as NaHCO3 or Na2CO3
to an aqueous ZrO2 suspension increased the gas evolution rate
in the photocatalytic decomposition of water.72 The interaction of
water with bulk zirconia surfaces has been characterized and inves-
tigated by x-ray powder diffraction, high-resolution transmission
electron microscopy, x-ray photoelectron spectroscopy, calorimetry,
and Fourier-transform infrared (FTIR) spectroscopy,73–76 along with
periodic density functional theory (DFT) calculations.77–80 Notably,
the FTIR investigation by Agron and co-workers76 of water sorp-
tion on ZrO2 found bands corresponding to chemisorbed OH
groups, suggesting that water bound to the surface of ZrO2 forms
a OZr(OH)2-like structure.

Bare (ZrO2)
0/−
n clusters have been extensively studied using

PES,81–83 matrix-IR spectroscopy,84 Fourier-transform microwave
spectroscopy,85 laser-induced fluorescence,86 resonant multi-photon
ionization,86 dispersed fluorescence,86 and computational meth-
ods.81,84,87–90 Despite this growing body of work, there are no experi-
mental data on the reactions of these clusters with a water molecule,
though computational studies by Fang et al.91 on the (ZrO2)n + H2O
(n = 1–4) reaction find these clusters are capable of splitting water.
That work shows the dissociative adduct to be more stable than
the molecularly adsorbed species by roughly 200 kJ/mol at both the
DFT and coupled cluster levels of theory, in agreement with experi-
mental observations on bulk zirconia.80 Furthermore, the optimized
geometries of the dissociative adduct were found to adopt only a cis-
hydroxide geometry in contrast with computational results for the
TiO0/−

2 + H2O dissociative adducts, where both cis and trans isomers
were identified.64,92

Here, we present a combined computational and experi-
mental investigation of ZrO3H−2 and ZrO3D−2 , thereby probing
the fundamental aspects of the ZrO0/−

2 + H2O gas-phase reaction.

The dense and highly resolved vibrational structure seen in the cryo-
SEVI spectra is only reproduced if detachment from both low-lying
isomers of the ZrO(OH)0/−

2 system, the cis-dihydroxide and trans-
dihydroxide dissociative adducts, is considered. Additionally, the
electron affinity of the neutral cis-dihydroxide structure and adia-
batic electron affinity (ADE) of the anionic trans-dihydroxide are
reported along with vibrational frequencies of both neutral struc-
tures. Furthermore, agreement between experiment and theory facil-
itates not only the structural determination of these clusters but
also provides insight into the differences between the hydrolysis
reactions of TiO2 and ZrO2.

A. Experimental methods
The cryo-SEVI method has been described in detail previ-

ously.93–95 In this work, ZrO3H−2 ions were formed using the same
modified ablation ion source used to generate TiO3H−2 .64 Clusters
are produced via a pulse from the frequency-doubled output of
a 20 Hz Nd:YAG (2 mJ/pulse–3 mJ/pulse) that strikes a rotating
and translating zirconium target, forming a plasma that is carried
through an 80 mm long, 2 mm diameter channel by a pulse of helium
gas (150 psi backing pressure, 60 μs pulse width) from an Even–Lavie
valve.96 This expansion allows for the plasma to cool and condense
to form charged and neutral molecules and clusters. These then pass
through a 1 mm slit into a second channel, 90 mm long and 2 mm
in diameter. In this second channel, a pulsed Series 9 General Valve
introduces helium bubbled through room temperature H2O or D2O
(15 psi backing pressure, pulse width ∼160 μs), allowing for the abla-
tion products to cool further, react with H2O or D2O, and finally
expand into vacuum.

The ions then pass through a radiofrequency (RF) hexapole ion
guide and a RF quadrupole mass filter before being directed into a
linear RF octupole ion trap held at 5 K and filled with a buffer gas
mixture of 20:80 H2:He. Collisions with the cold buffer gas result in
effective vibrational, rotational, and electronic cooling of the ions,
leading to internal temperatures of around 10 K.95,97 After ∼40 ms,
the clusters are extracted into an orthogonal Wiley–McLaren time of
flight mass spectrometer98 and focused into the interaction region
of a velocity-map imaging (VMI) electrostatic lens assembly,99,100

where they are photodetached by vertically polarized light from a
pulsed laser.

The detachment laser configuration is based on the output of a
dye laser pumped by the second harmonic of a Nd:YAG laser oper-
ating at 20 Hz. For photon energies above ∼1.3 eV (10 500 cm−1,
950 nm), the output of the dye laser is used without modifi-
cation. For energies below 1.3 eV, the output of the dye laser
is focused into a 63-cm long Raman cell described previously,64

resulting in tunable photon energies ranging from ∼1.0 eV to 1.3 eV
(8000 cm−1–10 500 cm−1).

The resulting photoelectrons are projected onto a 2D detec-
tor comprising two chevron-stacked microchannel plates coupled
to a phosphor screen, which is photographed by a CCD camera
after each laser shot.101 Each image is analyzed for individual elec-
tron events for which the centroids are calculated and binned in a
2200 × 2200 grid.102 Slight deviations from circularity in the accu-
mulated images are corrected using the circularization algorithm
described by Gascooke et al.103 The three-dimensional electron
velocity distribution is then reconstructed from the circularized
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images using the Maximum Entropy Velocity Legendre Reconstruc-
tion (MEVELER) algorithm.104 The radial position of features in the
reconstructed image is related to electron kinetic energy (eKE) by
acquiring VMI images for detachment from atomic Ni− and O− at
several photon energies.105,106

The VMI spectrometer has an approximately constant resolv-
ing power, ΔeKE/eKE,99 yielding the best eKE resolution for slow
electrons. As such, a SEVI spectrum is acquired by first taking an
overview spectrum at a relatively high photon energy before tuning
the detachment laser to energies slightly above features of interest.
This procedure results in a collection of high-resolution spectra over
narrow energy windows that are concatenated and scaled to match
intensities in the overview spectrum, which is less sensitive to vari-
ation of the photodetachment cross section with photon energy.
Spectra are plotted as a function of electron binding energy (eBE),
given by eBE = hν − eKE.

In addition to the eKE distributions, VMI allows for the deter-
mination of photoelectron angular distributions (PADs) associated
with each detachment transition, given by107

dσ
dΩ
=
σtot
4π
[1 + βP2(cos θ)], (1)

where σtot is the total detachment cross section, P2(x) is the second-
order Legendre polynomial, θ is the angle of the outgoing photo-
electron velocity vector with respect to the laser polarization axis,
and β is the anisotropy parameter. The anisotropy parameter, which
ranges from −1 (perpendicular detachment) to +2 (parallel detach-
ment), reflects the angular momentum of the detached electron and
is thus tied to the electronic character of each photodetachment
transition.108

B. Computational methods
A variety of DFT-based model chemistries were used to iden-

tify possible minimum energy structures along the anionic and
neutral ZrO2 + H2O surface. Initial benchmark work was car-
ried out by comparing six different functionals (B3LYP, B3PW91,
M06, M06L, PBE1PBE, and ωB97XD) and two basis sets [def2tzvp
and the Stuttgart/Cologne ECP28MHF (SC)], resulting in 12 dif-
ferent model chemistries.109–120 Tables S1–S6 summarize the results
obtained from these benchmark calculations. Preliminary results
suggested meaningful differences in normal mode frequencies and
vertical excitation energies. After a detailed inspection of these
results and comparison with the experimental data presented here,
we determined that the ωB97XD/SC model chemistry best repro-
duces the observed relative experimental energies and vibrational
frequencies.

A number of electronic states for the anion and neutral species
were investigated. For the anion, doublet and quartet spin states
were considered, while singlet and triplet states were included for the
neutral. All model chemistries predicted lowest spin states (neutral
singlet and anion doublet) to be energetically most stable. Excited-
state calculations were carried out using the same model chem-
istry within the (linear response) time-dependent DFT (TDDFT)
formalism.121–123

All calculations were carried out using a local development ver-
sion of the GAUSSIAN suite of electronic structure programs.124

The stability was tested on all converged Kohn–Sham determi-
nants.125,126 Standard methods were used for optimizing molec-
ular geometries,127 and the nature of located stationary points
was verified using analytical second-derivative calculations.128,129

Franck–Condon (FC) spectra were generated using the implemen-
tation by Bloino, Barone, and co-workers.130,131 Simulated PES
spectra, including FC progressions, were adjusted to align with
the experimental spectra after shifting DFT force constants of the
neutral state. Full details, including scaling factors and shifting
parameters, are provided in the supplementary material. Charac-
terization of electron detachment was facilitated by the Natural
Ionization Orbital (NIO) model.132 The NIO model provides the
Dyson orbital for a ΔSCF treatment of electron detachment and,
within the sudden approximation, provides insight into electron
relaxation accompanying electron detachment. The NIO model has
been successfully employed in a number of recent studies involving
similar systems.64,132,133

II. RESULTS AND DISCUSSION
A. Experiment

Cryo-SEVI spectra of ZrO3H−2 and ZrO3D−2 are shown in
Figs. 1 and 2, respectively. In Figs. 1 and 2, overview spectra, taken
with relatively high photon energies, are displayed in blue atop com-
posite high-resolution scans in black taken with various photon
energies. While the overview spectrum displays the structure for
eBEs up to ∼10 750 cm−1, high resolution scans were collected only
out to ∼10 000 cm−1 (see Fig. S1 in the supplementary material for
the full overview spectrum). These high-resolution traces highlight
structure covering eBEs from 9300 cm−1 to 10 000 cm−1, reveal-
ing a number of transitions (A-V and A-T in ZrO3H2 and ZrO3D2,
respectively) that correspond to detachment to different vibrational
levels of the neutral ZrO3H2 and ZrO3D2 species. Peaks as narrow as
4 cm−1 fwhm are reported, owing to the strong photoelectron signal
at low eKEs where resolution is highest. It should be noted that ions
with m/z = 140 were chosen despite the possible contribution from
92ZrO−3 as well as the target 90ZrO3H−2 species; the electron affinity of

FIG. 1. Cryo-SEVI spectra of ZrO3H2. The overview spectrum (blue, hν = 10 747
cm−1) is vertically offset from the high-resolution traces (black, variable photon
energies).
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FIG. 2. Cryo-SEVI spectra of ZrO3D2. The overview spectrum (blue,
hν = 9802 cm−1) is vertically offset from the high-resolution traces (black, variable
photon energies).

ZrO3 has not been experimentally determined but is calculated to be
3.06 eV, substantially higher than the photon energies employed in
this work (<1.35 eV), and thus should not contribute to the reported
spectra.

The sharp onset of structure at peak A, the vibrational ori-
gin, allows for determination of the EAs for ZrO3H2 and ZrO3D2
as 1.1636(5) and 1.1616(7) eV, respectively. Beyond peak A, we
observe a prominent doublet of peaks (B/C) residing just above
9400 cm−1 in both spectra, split by ∼5 cm−1. A similar doublet is
observed near 9800 cm−1 in both spectra (peaks O/P in the spec-
trum of ZrO3H2 and S/T in ZrO3D2). Owing to the doublet struc-
ture, assignment by inspection is not straightforward, as discussed
below.

Experimentally determined parameters are reported in Tables I
and II for ZrO3H2 and ZrO3D2, respectively, while peak positions,
widths, and assignments are listed in Tables S13 and S14. Mea-
sured PADs of peaks A, B, C, and D are shown in Fig. S10 of
the supplementary material. All PADs reported display a similar

TABLE I. Summary of electronic and vibrational energies for neutral ZrO(OH)2
extracted from the cryo-SEVI experiment compared to the (unscaled) results from
ωB97XD/SC calculations.

1–1a′ 1–1b′

Expt. Theory Expt. Theory

ADE (eV) 1.1636(5) 1.04 1.1636(5) 1.04
ν5 (cm−1) 597(2) 622.8
ν6 (cm−1) 429(6) 513.7
ν8 (cm−1) 358(3) 416.8
ν9 (cm−1) 388(4) 428.8
ν10 (cm−1) 167(2) 191.0
ν11 (cm−1) 167(2) 170.3 115(3) 141.0
ν12 (cm−1) 67(3) 87.6 73(3) 75.0

TABLE II. Summary of electronic and vibrational energies for neutral ZrO(OD)2
extracted from the cryo-SEVI experiment compared to the (unscaled) results from
ωB97XD/SC calculations.

1–1a′ 1–1b′

Expt. Theory Expt. Theory

ADE (eV) 1.1616(7) 1.04 1.1616(7) 1.04
ν6 (cm−1) 425(3) 395.2
ν8 (cm−1) 347(5) 316.4
ν9 (cm−1) 384(5) 323.8
ν10 (cm−1) 155(3) 181.1
ν11 (cm−1) 155(3) 159.9 110(4) 117.3
ν12 (cm−1) 65(3) 82.4 69(3) 70.9

trend—features have an anisotropy parameter, β, near zero at low
eKE that becomes increasingly positive as the eKE rises.

B. Calculations
The structures found in our previous work64 on the TiO0/−

2
+ H2O reaction were used as starting points for minimum energy
structure searches. Figure 3 shows the minimum energy structures
found on the anionic and neutral ZrO3H2 potential energy sur-
faces, along with corresponding zero-point corrected energies rel-
ative to 1–1a. Cartesian coordinates for these optimized structures
are provided in the supplementary material. In agreement with pre-
viously reported work by Dixon and co-workers91 and similar to
our previous report on TiO(OH)2,64 a dissociative adduct (1–1a′)
with a cis-OH geometry was found to be the lowest energy neu-
tral structure. Similarly, the 1–1a geometry was found to be the
lowest energy anion structure. Two other structures were identi-
fied for both neutral and anion states, labeled 1–1b (trans-OH)
and 1–1c (molecularly adsorbed). Structure 1–1b differs from 1–
1a by rotation of one hydroxide ligand and lies only 0.07 eV
above the global minimum. Thus, the two structures, 1–1a and
1–1b, are conformers related by OH bond rotation with a bar-
rier in the anion of 0.016 eV. The neutral trans-hydroxide 1–
1b′ lies at 0.07 eV above neutral 1–1a′, while the lowest energy
neutral molecularly adsorbed species is 3.11 eV above the anion
minimum, and its anion is 2.14 eV above the minimum of the
anionic cis structure. Interestingly, unlike TiO3H0/−

2 , the ZrO3H0/−
2

dissociative adducts are found to have non-planar optimized
structures.

Given its high relative energy with respect to the dis-
sociative adducts, the molecularly adsorbed adduct 1–1c was
excluded from further consideration. The calculated adiabatic
detachment energies (ADEs) for 1–1a and 1–1b, 1.04 eV and
1.11 eV, respectively, are both in good agreement with the
experimental value of 1.1636(5) eV, determined by the position
of peak A. NIO analysis for both 1–1a and 1–1b shows the
detached electron originates in the anion HOMO, which is local-
ized on Zr and strongly resembles a metal dz2 orbital (Fig. 4).
The similarity of the NIO results suggests that both structures
should have similar photodetachment cross sections and angular
distributions.

J. Chem. Phys. 153, 244308 (2020); doi: 10.1063/5.0037636 153, 244308-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0037636
https://www.scitation.org/doi/suppl/10.1063/5.0037636


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Optimized geometries of
anionic and neutral ZrO3H2 found with
ωB97XD/SC. Energies are provided
relative to the 1–1a geometry of the
anion and include zero-point correc-
tions. Geometric parameters are also
provided.

III. ANALYSIS
A. Assignment of spectra

To examine the possible contributions of the two candidate
structures and whether one or both of them are responsible for the
observed experimental detachment transitions, we considered FC
simulations for electron detachment from both isomers, shown as
red sticks for 1–1a and blue sticks for 1–1b in Figs. 5 and 6, using
experimental frequencies when available. Simulated spectra using
unscaled frequencies are shown in Figs. S2–S5 of the supplementary
material. Each isomer has distinct FC progressions; the one cor-
responding to 1–1a shows a short progression in the out-of-plane
bending mode, ν12 (ω12a = 73 cm−1), while that of 1–1b shows an
extended progression for the same mode (ω12b = 67 cm−1), owing
to a greater change in the dihedral angle between 1–1b and 1–1b′
than in the 1–1a manifold, as outlined in Tables S7 and S8. Fur-
thermore, FC-simulations for the 1–1b manifold show considerably

FIG. 4. NIO describing the electron detachment from the anion of 1–1a (a) and
1–1b (b) to the corresponding ground electronic state of the neutral species.

more structure due to activity along the ν10 and ν11 O–H wag-
ging modes (ω10b = 167 cm−1, ω11b = 115 cm−1) that serve as the
isomerization coordinate to the 1–1a′ structure.

As shown in Fig. 5, simulation of detachment from 1–1a only
replicates features A, B, P, Q, and V of the cryo-SEVI spectrum of
ZrO3H2, failing to capture the majority of the observed structure.
Conversely, simulations for the 1–1b isomer capture the majority of
the spectral structure but fail to replicate the doublets B/C and O/P
observed in the high-resolution traces. A composite of both simula-
tions replicates the observed experimental spectrum well, including
the doublet structure of peaks B/C and O/P, suggesting the presence
of both isomers in the experiment.

In addition to enabling the identification of the anion isomers,
the well-resolved vibrational structure in the spectra allows us to
determine vibrational frequencies of the neutral 1–1a′ and 1–1b′

FIG. 5. Cryo-SEVI spectra of ZrO3H−2 overlaid with Franck–Condon stick spectra
for the 1–1a (red) and 1–1b (blue) isomers.
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FIG. 6. Cryo-SEVI spectra of ZrO3D−2 overlaid with Franck–Condon stick spectra
for the 1–1a (red) and 1–1b (blue) isomers.

isomers of ZrO(OH)2 and ZrO(OD)2, as reported in Tables I and II,
respectively. Remarkably, we are able to distinguish features arising
from transitions along the ν12 modes of the 1–1a′ and 1–1b′ isomers,
despite their frequencies differing by only 6 cm−1. One dominant
pattern in the spectrum [peaks C, E, and H in both ZrO(OH)2 and
ZrO(OD)2] corresponds to a progression of the ν12 out-of-plane
bend of the 1–1b′ isomer with a vibrational frequency of 73(3) cm−1

[69(3) cm−1 in ZrO(OD)2]. Furthermore, agreement between exper-
imental and computational results allows for assignment of peaks
D, F, and N to the vibrational fundamentals of the ν11, ν10, and ν8
modes of the 1–1b′ isomer, allowing for the determination of their
vibrational frequencies as 115(3), 167(2), and 358(3) cm−1 [110(4),
155(3), and 347(5) cm−1 in ZrO(OD)2].

A similar treatment can be applied for the detachment tran-
sition to 1–1a′. Features B, F, P, Q, and V correspond to transitions
involving one quantum along the ν12, ν11, ν9, ν6, and ν5 normal coor-
dinates, allowing for determination of their vibrational frequencies
as 67(3), 167(2), 388(4), 429(6), and 597(2) cm−1 in ZrO(OH)2. The
same vibrational modes are observed in the deuterated spectra, with
the exception of the ν5 mode owing to the truncation of this spectra
before its appearance, appearing as features B, F, P, and T with vibra-
tional frequencies of 65(3), 155(3), 384(5), and 425(3) cm−1. The
remaining structure in both spectra corresponds to transitions with
excitation along multiple vibrational modes; details of these assign-
ments can be found in Tables S13 and S14 of the supplementary
material for ZrO(OH)2 and ZrO(OD)2, respectively.

Given that the 1–1b simulations reproduce most of the spectral
features observed, one needs to consider if it is possible to inter-
pret the spectrum with this isomer alone. Previous cryo-SEVI studies
have uncovered myriad non-Born–Oppenheimer behavior in small
molecules that fail to be reproduced by FC simulations, most notably
vibronic coupling.134–137 The signatures of this phenomenon in cryo-
SEVI are well established, arising due to borrowed electronic char-
acter from an excited state.64,135,137–141 Among these signatures are
differing photoelectron angular distributions between transitions
that are allowed only through vibronic coupling and those that are
FC-allowed.

In the present work, doublet splittings of peaks B and P are
notably absent from the 1–1b simulations. For peak B to correspond

to a vibronic coupling induced transition, as opposed to a Franck–
Condon allowed transition within the 1–1a band of transitions, as
listed in Table I, would require a non-totally-symmetric vibrational
frequency on the order of 70 cm−1 in the 1–1b′ isomer. No cal-
culated frequency is within a factor of 2 of this value; indeed, the
best candidate is the ν11 mode (ω11 = 141 cm−1) corresponding to
the transition that produces peak D. Furthermore, the PADs of fea-
tures B/C do not differ from one another, as shown in Fig. S10. The
similar PADs for detachment from both isomers are in agreement
with our NIO analyses that suggest the detached electron resides in
a similar orbital for 1–1a and 1–1b, resulting in outgoing electrons
with similar partial wave composition. As the measured PADs reflect
the angular momentum of the detached electron, they are tied to
the electronic character of each photodetachment transition and are
thus expected not to differ between detachments from 1–1a or 1–1b.

An alternative option is that peaks B and P could report on
transitions from or to excited anionic or neutral states. The cal-
culated values of the lowest anion and neutral excited electronic
states, 1.5 eV and 4.5 eV above their respective ground states, render
them inaccessible as the cryogenic nature of the cryo-SEVI exper-
iment produces ions with electronic temperatures on the order of
10 K (0.86 meV),95,97,134 and the photon energies employed in this
experiment are <1.35 eV.

As much of the structure in the 1–1b FC simulation originates
from the ν12 umbrella-mode, an alternative possibility for the origin
of the doublet structure of peaks B/C and O/P is inversion doubling.
Such a process occurs when a vibrational mode distorts a molecule
such that it breaks planar symmetry, leading to a double-well poten-
tial surface splitting the vibrational levels supported by such a sur-
face, most famously occurring in the umbrella mode of ammonia.142

If such a double-well surface is capable of supporting both the left
and right wavefunctions on the anionic potential and both sides of
the well are populated, this will give rise to a doublet of transitions
following photodetachment.143,144 Our calculations indicate that the
inversion barrier for the 1–1b isomer is 1.64 eV, owing to the large
dihedral angle of this structure. Considering the high barrier, we
expect for contributions from tunneling splitting to be too small to
observe. The structure observed in the cryo-SEVI spectra presented
is thus most reasonably assigned to photodetachment from two dif-
ferent anion isomers, each resulting in a neutral isomer of similar
molecular symmetry and overall structure.

The observation of multiple structural isomers in a cryo-SEVI
experiment has been observed previously in the cryo-SEVI spectra
of Ti2O−4 and Zr2O−4 .82 In that work, the spectra were assigned to
detachment from anionic structural isomers with relative energet-
ics (6.7 kJ/mol and 10.5 kJ/mol, respectively) that are comparable
to those reported in the present study (7.5 kJ/mol).82 The assign-
ment to two different isomers of Ti2O−4 and Zr2O−4 was suggested
and supported by FC progressions with dichotomous PADs and
notably different onsets resulting from unique adiabatic detachment
energies for each isomer. As the structures observed here are con-
formers related by a bond rotation, it is unsurprising that neither
the PADs or ADEs differ substantially in the present work, sug-
gesting the 1–1a and 1–1b isomers have ADEs lying within our
experimental resolution (2 cm−1). This result is consistent with
the calculated energetics that show the energy difference between
the cis and trans conformers is virtually identical in the anion and
neutral.
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B. Comparison to TiO(OH)2
The presence of two low-lying anion isomers of the ZrO2 +

H2O dissociative adduct is in contrast with our previous findings
for the Ti-containing analog of this system, in which we observe
detachment solely from the 1–1a isomer.64 In that work, the cryo-
SEVI spectrum is relatively sparse, displaying less structure in the
first 2000 cm−1 than that is observed in the 800 cm−1 of the spectral
structure presented here, and shows no signs of contribution from
the 1–1b isomer. Given that the experimental conditions to gener-
ate both species differ only by the identity of the metal target used
to generate clusters of interest, the observation of two isomers in the
present study is particularly interesting.

Our calculations show that the energetics of both Ti- and Zr-
containing 1–1a and 1–1b anions are nearly identical with the 1–1a
structure more stable than 1–1b by 0.08 eV and 0.07 eV in the Ti-
and Zr-systems, respectively. Furthermore, the calculated barriers
to interconversion between the cis-1–1a and trans-1–1b structures
are similar for these two systems. Here, we calculate the cis-to-trans
barrier for TiO(OH)−2 to be 803 cm−1 (0.100 eV), while the trans-
to-cis barrier is 159 cm−1 (0.020 eV). For ZrO(OH)−2 , these barriers
are calculated as 737 cm−1 (0.091 eV) and 130 cm−1 (0.016 eV),
respectively, suggesting one might expect similar populations of
conformers in each experiment.

Given the similarity in the geometries, energetics, and barriers
of these clusters, it is likely that the observation of both the 1–1a
and 1–1b species in ZrO(OH)−2 but not TiO(OH)−2 results from dis-
parate ion temperatures in these two systems. Such a disparity could
result from the method by which these clusters are generated—laser
ablation of a metal target generates a hot plasma that condenses to
form the clusters of interest. It is well established that the cluster
condensation process results in significant heating,145 as the bind-
ing energy of each additional atom is deposited into the cluster.
Given that such growth events can occur late in the clustering chan-
nel and the bond enthalpy of Zr–O exceeds that of Ti–O by nearly
100 kJ/mol,146 it is likely these two systems will have differing
thermal populations prior to entering the cryogenic trap, with
ZrO(OH)−2 hotter than TiO(OH)−2 . The increased temperature will
enhance the population of higher lying isomers relative to the global
minimum structure, and such a distribution is likely to be mir-
rored in the trap, as buffer gas cooling is known to favor kinetic
trapping.147,148 Such a result would agree with previous cryo-SEVI
studies of clusters, where we find trapping of ions in low-lying local
minima.82,149,150

It should also be noted that in the case of TiO3H2, the appear-
ance of the umbrella mode (ν12 here and ν8 in TiO3H2) was ascribed
to vibronic coupling,64 while no such non-Born–Oppenheimer
process is observed here, despite similar energetics for the states
involved. In that work, the Ti-containing analog was determined
to be a planar C2v structure in both its neutral and anionic forms,
resulting in an FC-forbidden umbrella mode, as the out-of-plane
motion of this vibrational mode breaks the C2v symmetry of the
molecule. Conversely, the Zr-containing systems presently observed
are non-planar Cs structures with dihedral angles ranging from 20○

to 30○ whose molecular symmetry is not perturbed by the umbrella
mode. While this motion can only be observed through vibronic
coupling in the Ti-system, such a mode is readily accessible for
ZrO3H2 without violating the Born–Oppenheimer approximation.

C. Reactivity of MO2 with H2O
The cryo-SEVI spectrum of unreacted ZrO−2 has been previ-

ously reported, giving an electron affinity of 1.6397(5) eV for the
singlet ground state of ZrO2.83 The electron affinity of the ZrO(OH)2
dissociative adducts reported here is lower by nearly 0.5 eV, sug-
gesting the neutral ZrO2 + H2O → ZrO(OH)2 reaction is more
exothermic than its anionic counterpart. The reaction with water to
form the dissociative ZrO(OH)2 adduct stabilizes neutral ZrO2 more
than it does the anion, implying that the neutral, which has a zirco-
nium center with a +4 oxidation state, is more reactive toward water
than anionic ZrO2 where Zr has an oxidation state of +3. A similar
trend in electron affinities was seen for TiO2 and TiO(OH)2. Taken
together, these results suggest that this charge effect likely derives
from donation of electron density from the incoming water molecule
to the metal center, favoring a higher oxidation state.64

Notably, the measured difference in EA for the Ti-containing
system was roughly 0.3 eV, suggesting that the addition of water to
the Zr-based system stabilizes ZrO2 relative to its anion a full 0.2 eV
(19.2 kJ/mol) more than the Ti-based system. In turn, this implies
an increased reactivity of the ZrO2 moiety compared to TiO2. As
single site catalyst studies have found high photocatalytic activ-
ity attributed to the increased reactivity of single TiO2 structures
anchored onto porous surfaces,151,152 the results presented here show
promise for the development of Zr-based analogs with increased effi-
ciency. While it is difficult to make a direct comparison between the
chemistry occurring at the bulk surface and the gas-phase ZrO0/−

2
reaction, the trends reported here do reflect the electrochemical
behavior of the bulk,152 especially with respect to a higher oxida-
tion state, resulting in a more energetically favorable interaction with
water.

IV. CONCLUSION
A joint DFT and high-resolution photoelectron study has been

used to investigate the hydrolysis of ZrO0/−
2 . Experimental spectra

of ZrO3H−2 are reported using slow electron velocity map imaging
of cryogenically cooled anions, revealing the presence of two dis-
sociative adduct conformers and yielding insights into the vibronic
structure and energetics of the corresponding neutral species. The
high resolution afforded by this technique reveals a dense vibra-
tional manifold dissimilar to the well-separated peaks obtained in
the cryo-SEVI study of the titanium analog.64 Franck–Condon sim-
ulations for both the cis- (1–1a) and trans-dihydroxide (1–1b) struc-
tures are required to fully reproduce the complicated cryo-SEVI
spectra, representing the first report of the trans-hydroxide (1–1b)
structure of the ZrO3H2 system. The appearance of these two iso-
mers is attributed to differing cluster temperatures prior to reaction
with H2O or D2O, resulting in an enhancement of the population
of structure 1–1b in ZrO3H−2 . Furthermore, the greater stabilization
of water-splitting by ZrO2 than TiO2 suggests higher reactivity for
Zr-based catalysts, offering new insights into the development of
single-site catalysts for H2 production.

SUPPLEMENTARY MATERIAL

See the supplementary material for details regarding elec-
tronic structure and Franck–Condon calculations summarized in
Tables S1–S16 and Figs. S1–S10.
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