Infrared Photodissociation Spectroscopy of Microhydrated Nitrate–Nitric Acid Clusters NO$_3^-$ (HNO$_3$)$_m$ (H$_2$O)$_n$

Nadja Heine,† Tara I. Yacovitch,‡ Franziska Schubert,‡ Claudia Brieger,‡ Daniel M. Neumark,*‡∥ and Knut R. Asmis*§,8

†Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
‡Department of Chemistry, University of California, Berkeley, California 94720, United States
§Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig, Germany
∥Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

ABSTRACT: Infrared multiple photon dissociation (IRMPD) spectra of NO$_3^-$ (HNO$_3$)$_m$ (H$_2$O)$_n$ with $m = 1$–3, up to $n = 8$ and $z \geq 1$, are measured in the fingerprint region (550–1880 cm$^{-1}$), directly probing the NO-stretching modes, as well as bending and other lower frequency modes. The assignment of the spectra is aided by electronic structure calculations. The IRMPD spectrum of the $m = 1$, $n = 0$ cluster is distinctly different from all the other measured spectra as a result of strong hydrogen bonding, leading to an equally shared proton in between two nitrate moieties (O$_2$NO$^-$···H$^+$. . . ONO$_3^-$). It exhibits a strong absorption at 877 cm$^{-1}$ and lacks the characteristic NO$_2$-antisymmetric stretching/NOH-bending mode absorption close to 1650 cm$^{-1}$. Addition of at least one more nitric acid molecule or two more water molecules weakens the hydrogen bond network, breaking the symmetry of this arrangement and leading to localization of the proton near one of the nitrate cores, effectively forming HNO$_3$ hydrogen-bonded to NO$_3^-$. Not all IR active modes are observed in the IRMPD spectra of the bare nitrate–nitric acid clusters. Addition of a water or a hydrogen molecule lowers the dissociation limit of the complexes and relaxes (H$_2$O) or lifts (H$_2$) this IRMPD transparency.

I. INTRODUCTION

Nitrate-containing ions play an important role in chemical and physical processes in the atmosphere, such as electrical conductivity and the formation of new particles through ion nucleation.1,2 Nitrate (NO$_3^-$) and its clusters with nitric acid (HNO$_3$) and water are among the most abundant anions in the atmosphere. They were first measured in the stratosphere in 19783 and, five years later, in the troposphere by Arnold with a balloon-borne mass spectrometer.4 While NO$_3^-$ (HNO$_3$)$_2$ accounts for over 90% of all negative ions at heights around 27–30 km,5 NO$_3^-$ (HNO$_3$)$_2$ (H$_2$O) dominates in the tropospheric regions, due to a higher abundance of water vapor.6 A major source of these clusters is oxidation of NO$_2$ to HNO$_3$ and subsequent deprotonation via galactic cosmic rays, radioactivity, and electrical discharges.7 The resulting NO$_3^-$ reacts promptly with trace gases via ion–molecule reactions forming NO$_3^-$ (HNO$_3$)$_2$ (H$_2$O)$_z$ clusters. Understanding the structure, stability, reactivity, and growth rates of nitrate-containing clusters is crucial for improving atmospheric ion chemistry models.7

Here, we use vibrational spectroscopy of gas phase cluster anions in combination with electronic structure calculations to investigate the geometric structure and stability of NO$_3^-$ (HNO$_3$)$_m$ (H$_2$O)$_n$ clusters with $m = 1$–3 and up to $n = 8$, in order to complement mass spectrometric and kinetics experiments and to test structural predictions from earlier computational studies.8,9 Previous experimental studies have mainly focused on the $m = 1$, $n = 0$ cluster, also referred to as hydrogen dinitrate (O$_2$NO$^-$···H$^+$. . . ONO$_3^-$), due to the presence of an equally shared proton as a consequence of strong hydrogen bonding.10 A variety of salts has been investigated with X-ray and neutron diffraction,11,12 as well as infrared (IR)13 and resonance Raman spectroscopy,14 showing that the nominally planar and centrosymmetric D_{2h} structure can be distorted depending on the counterions. Rate constants, reaction enthalpies, and bond energies have been determined experimentally for NO$_3^-$ (HNO$_3$)$_m$ (H$_2$O)$_n$ using mass spectrometry, in order to investigate the process of dissociation/formation.15–21 These experiments show similar clustering behavior as was recently...
reported for sulfate/sulfuric acid/water clusters: the formation of $A'\cdot (\text{HA})_{1-3}$ with $A = \text{HSO}_4^-$ or NO_3^- is preferred over $A' (\text{H}_2\text{O})$ because the acid molecule binds more strongly to the conjugate base anion than the water molecule. For example, in the reaction $\text{NO}_3^-\cdot \text{H}_2\text{O} + \text{HNO}_3 \rightarrow \text{NO}_3^-\cdot \text{HNO}_3 + \text{H}_2\text{O}$ ($k = 5.5 \times 10^{-10}$ cm3/s), water is rapidly replaced by nitric acid. The experimentally determined sequential ensembles of complexation for 1–3 molecules of HNO_3 to NO_3^- are ~ 113, ~ 67, and ~ 54 kJ/mol, respectively; these relatively high values indicate strong association complexes of nitric acid with nitrate. The most extensive ab initio calculations on $\text{NO}_3^-\cdot (\text{H}_2\text{O})_m$ with $m = 1–3$ have been performed by Galvez et al. They found planar global minimum-energy structures for all three clusters and nonplanar relative minima only slightly higher in energy. For $m > 1$, they predicted a distortion of the symmetric $\text{O}_2\text{NO}^\text{−}\cdot \text{H}^\text{−}\text{−}\text{H}^\text{−}\text{−}\text{H}^\text{−}\text{−}\text{NO}_2^\text{−}\cdot \text{NO}_2^\text{−}\cdot \text{NO}_2^\text{−}\cdot \text{NO}_2^\text{−}$ arrangement, leading to asymmetric $\text{O}_2\text{NO}^\text{−}\cdot \text{H}^\text{−}\text{−}\text{H}^\text{−}\text{−}\text{NO}_2^\text{−}\cdot \text{NO}_2^\text{−}\cdot \text{NO}_2^\text{−}\cdot \text{NO}_2^\text{−}$ structures as the hydrogen bond (HB) network grows in the cluster.

In a previous IRMPD study on microhydrated $\text{NO}_3^-\cdot (\text{H}_2\text{O})_{1-6}$ clusters, it was demonstrated that the degeneracy of the antisymmetric $\text{NO}_3^\text{−}$ stretching vibration ν_1 can be exploited as a sensitive indicator for the symmetry of the microhydration shell/ HB network and that $\text{NO}_3^\text{−}$ favors surface hydration, in contrast to the internal solvation of sulfate dianions. Recent studies on mixed bisulfate/nitrate/neutral acid clusters explored the influence of acid solvation on the conjugated base anion and not only showed that the charge localization can vary unexpectedly upon cluster composition, but also revealed the sensitivity of the $\text{NO}_3^\text{−}$-antisymmetric stretching/NOH-bending mode to the presence of an intact HNO_3 molecule. Studies on bisulfate/sulfuric acid clusters demonstrated that certain normal modes, mainly those that are localized on the HB network, show a large degree of IRMPD transparency. Upon messenger-tagging with H_2, the linear IR intensity of these modes was recovered, since photodissociation can then occur immediately upon the absorption of a single photon.

The present investigation of the structure and energetics of nitrate/nitric acid/water clusters is aimed at ultimately shedding new light on the early steps in the formation of nitric acid aerosols. Here, we present IRMPD spectra of these mass-selected clusters from 550 to 1880 cm$^{-1}$, the linear IR intensity of these modes was recovered, since photodissociation can then occur immediately upon the absorption of a single photon.

II. EXPERIMENTAL AND THEORETICAL METHODS

The IRMPD experiments were carried out using a previously described ion-trap tandem-mass-spectrometer which was temporarily installed at the “Free Electron Laser for Infrared eXperiments” (FELIX) user facility at the FOM Institute Rijnhuizen (Nieuwegein, The Netherlands). Briefly, microevaporated nitrate/nitric acid clusters, $\text{NO}_3^-\cdot (\text{H}_2\text{O})_m(\text{H}_2)$, are produced by electrospray in a modified commercial Z-spray source from a 10 mM solution of HNO_3 in a 1:1 water/acetoniitrile solvent mixture. The beam of ions is skimmed and collimated in a decapole ion guide, and subsequently mass-selected in a commercial quadrupole mass filter. After mass selection, the cluster anions are deflected by 90° using an electrostatic quadrupole deflector and focused into a cryogenically-cooled ion trap, held at 10 K. Here, the anions are collected for 99 ms and thermalized through collisions with a buffer gas (He/H$_2$). In a 10 Hz cycle, ions are extracted and focused into the center of the extraction region of a time-of-flight mass spectrometer, where they interact with a single FELIX macropulse. If the wavelength of the IR radiation is in resonance with a vibrational transition, fragmentation of the (parent) cluster anions occurs. All anions are extracted by a set of high voltage pulses and are detected as a function of their flight time using an MCP detector. Photodissociation spectra in the linear absorption regime are obtained by condensing molecular hydrogen onto the mass-selected cluster anions in the ion trap. The photodissociation cross section σ_{IRMPD} is determined from the relative abundances of the parent and photofragment ions, $I_p(\nu)$ and $I_f(\nu)$, and the frequency-dependent energy fluence (assuming a constant interaction area throughout the range of scanned wavelengths) $\phi(\nu)$ using

$$\sigma_{\text{IRMPD}} = -\ln \left[\frac{I_f(\nu)}{I_p(\nu) + I_f(\nu)} \right] / \phi(\nu).$$

When investigating tagged species, we assume a single-photon process. Intensities are therefore normalized to the photon fluence $\phi(\nu) = \phi(\nu)/h\nu$, such that $\sigma \propto \sigma_{\text{IRMPD}}$.

In order to support the analysis of the experimental spectra, DFT calculations were performed using the TURBOMOLE program package. The B3LYP hybrid functional and the 6-311+G(d,p) basis set are employed. Structure optimizations use tight convergence criteria, Cartesian gradients smaller than 1 hartree/bohr, and energy changes smaller than 1 hartree. Hartree, see Supporting Information (SI) for total energies. The SCF convergence criterion is 1×10^{-7} Hartree for the energy and 1×10^{-7} a.u. for the root-mean-square of the density. Harmonic vibrational frequencies are obtained from second analytic derivatives. It is known that B3LYP vibrational frequencies are systematically too large (see, e.g., refs 45,46). Agreement with observed frequencies can be improved by scaling, which accounts for neglected anharmonicities as well as systematic errors of the calculated harmonic force constants. We use 0.968 as a scaling parameter, which falls into the known ranges for the B3LYP functional.45,46

III. RESULTS

Trends in Experimental IRMPD Spectra. Overviews of the IRMPD spectra of $\text{NO}_3^-\cdot (\text{H}_2\text{O})_m(\text{H}_2)$, clusters in the fingerprint region (530–1880 cm$^{-1}$) are shown in Figures 1 and 2. The stoichiometry of the clusters is abbreviated by (m,n,z). The spectra of the $m=1–3$ clusters without water ($n=0$) are compared to the thin film IR-spectrum of pure HNO_3 measured at 45 K, in Figure 1. The spectra are arranged from top to bottom according to increasing number of neutral acid molecules. The hydrogen-tagged equivalents, when available, are shown above the IRMPD spectrum of the corresponding bare cluster anion. Spectral features are labeled with A, B, and P according to their assignment to modes of nitric acid molecules (A), those of the conjugate base nitrate anion (B), and to shared proton (P) modes. The detailed assignments, described in the Analysis section, together with experimental and calculated band positions, are listed in Table 1. The band assignments are derived

dx.doi.org/10.1021/jp412222q | J. Phys. Chem. A 2014, 118, 7613–7622
from the local modes (see Table 2) of the bare nitrate (\(\nu_1 - \nu_{5z}\)), nitric acid (\(\nu_1 - \nu_{5g}\)), and the shared proton (\(\nu_{z_{\text{H}}-z_{\text{O}}-z_{\text{O}}}\)).

In the following description of the experimental IRMPD spectra, we will first focus on identifying general trends. The spectral features are tentatively assigned based on a comparison to previous IRMPD results on related systems as well as IR and Raman measurements of solid complexes, matrix-isolated species, condensed phase samples, and nitric acid vapor. This preliminary assignment is then evaluated in more detail in the Analysis section, where we compare the experimental data to simulated IR spectra.

The IRMPD spectra presented in Figure 1 show a rich structure of IR active peaks of varying widths and positions. Several general trends are observed. First, the H2-tagged spectra show the most bands and these are typically narrower than their counterparts in the IRMPD spectra. The absence of IR bands in the spectra of the untagged anions is reminiscent of observations in liquid alkali nitrate solution. Here, the \(\nu_{1}\) mode, the nominally doubly degenerate and intense antisymmetric stretch of the NO\(_3\) moiety, splits into two components due to asymmetric solvation. Previous experiments on NO\(_3\)·Ar in the gas phase showed that this splitting is not seen in the absence of perturbing solvent molecules. The IR photodissociation spectrum of NO\(_3\)·Ar is therefore characterized by a single, intense band, observed at 1349 cm\(^{-1}\). In our spectra, signal attributed to three of these modes (\(\nu_{5y}\), \(\nu_{5y}\), and \(\nu_{5z}\)) is observed and correlates to the bands labeled B3 (1437 cm\(^{-1}\)), B1 (1015 cm\(^{-1}\)), and B4 (725 cm\(^{-1}\)), respectively. As will be shown later, the \(\nu_{5z}\) modes of both nitrate moieties actually couple strongly, leading to the observed splitting into the three groups of peaks in between 1250 and 1600 cm\(^{-1}\).

Four modes of neutral nitric acid molecules can be assigned by comparison with the data from IR measurements on thin films of pure HNO\(_3\) (see lowest spectrum labeled “film” in Figure 1). The NO\(_3\) antisymmetric stretch (\(\nu_{5y}\)), N=O–H bend (\(\nu_{5z}\)), NO\(_3\) symmetric stretch (\(\nu_{5y}\)), and the N=O(H) stretch (\(\nu_{5z}\)) are located at 1686, ~1480, 1328, and 965 cm\(^{-1}\) in the condensed phase spectrum, and the corresponding bands in our gas phase spectra are labeled with A4, A2, A3, and A5. The nitric acid core therefore attribute band P to the shared-proton stretching mode in O\(_2\)NO\(_3\)·H\(^+\)···ONOO\(_2\).
bends $\nu_{\text{vO-H}}$ (550–791 cm$^{-1}$) are known from IR absorption spectra of nitric acid vapor (579–762 cm$^{-1}$)50 as well as in a N$_2$ matrix (597–767 cm$^{-1}$)58 and correlate with bands A6 to A8.

We also measured IRMPD spectra of partially hydrated nitrate/nitric acid clusters for $m = 1$ and $m = 2$. These are shown in Figure 2, where they are also compared to the thin film IR-spectrum of a HNO$_3$/H$_2$O binary amorphous mixture containing predominantly dissociated acid molecules. For $m = 1$, addition of a single water molecule to hydrogen dinitrate leads to partial lifting of some of the IRMPD transparent modes (see Analysis), but otherwise perturbs the band positions in the IR spectrum rather weakly. Solvation by at least two water molecules or another nitric acid molecule, on the other hand, leads to more significant changes in the IRMPD spectrum, namely, the appearance of the intense bands A3 and A5 and the disappearance of the shared-proton stretching mode P. For $m = 2$, the addition of a single water molecule is sufficient to recover the IRMPD transparent modes B4 and A6-A8 in the core bend region (≤850 cm$^{-1}$). The most striking change in the gas phase spectra upon hydration with up to eight water molecules is the blue shift of band A3 from 1190 cm$^{-1}$ in the (2,0,0) spectrum to above 1300 cm$^{-1}$ in the (2,8,0) spectrum, indicating a strengthening of the nitric acid N=O bonds upon hydration. Moreover, band B3, associated with the antisymmetric stretch of the nitrate anion, increases in relative intensity upon microhydration, while the bands attributed to intact nitric acid decrease. Comparison of the thin film IR spectrum to the gas phase IRMPD-spectrum of (2,8,0) in Figure 2 shows that most absorption features have nearly converged toward the condensed phase limit with regard to position and width. Hence, the formation of a local hydrogen bond network is mainly responsible for the increase in width of the absorption features and already quite reasonably reproduced by the addition of a few water molecules ($n \geq 4$) to NO$_3^−$(HNO$_3$)$_2$.

IV. ANALYSIS

The experimental IRMPD spectra of the nitrate/nitric acid/water clusters are compared to simulated IR spectra derived from harmonic frequencies and intensities in Figures 3–5, respectively. Band positions and scaled harmonic frequencies as well as energetic ordering (e.g., a, b, ...) are numbered and labeled with A, B, and P according to their assignment to the normal modes of the nitric acid molecule (A), of the conjugate base nitrate anion (B), or of the shared proton (P) (see Table 2). See Figures 3–5 for the corresponding structures of the listed isomers and Table 3 for the relative energies.

Table 2. Labeling, Description, and Experimental Values (in cm$^{-1}$) of the Normal Modes of the Nitric Acid Molecule (HNO$_3$) and the Nitrate Anion (NO$_3^-$)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Exp.</th>
<th>Mode</th>
<th>Description</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_1</td>
<td>O-H stretch</td>
<td>3550a</td>
<td>δ_1</td>
<td>NO$_2$ antisym. stretch</td>
<td>1710b</td>
</tr>
<tr>
<td>ν_2</td>
<td>NO$_2$ sym. stretch</td>
<td>1331a</td>
<td>δ_2</td>
<td>Out-of-plane deformation</td>
<td>825c</td>
</tr>
<tr>
<td>ν_3</td>
<td>NO$_2$ sym. stretch</td>
<td>1325a</td>
<td>δ_3</td>
<td>NO$_2$ antisym. stretch</td>
<td>1349d</td>
</tr>
<tr>
<td>ν_4</td>
<td>H-O-N bend</td>
<td>1379a</td>
<td>δ_4</td>
<td>in-plane rock</td>
<td>719e</td>
</tr>
<tr>
<td>ν_5</td>
<td>HONO torsion</td>
<td>647a</td>
<td>ν_6</td>
<td>NO$_2$ wag</td>
<td>762a</td>
</tr>
<tr>
<td>ν_6</td>
<td>HONO torsion</td>
<td>456a</td>
<td>ν_7</td>
<td>NO$_2$ wag</td>
<td>762a</td>
</tr>
</tbody>
</table>

aGas phase. ref 50. bGas phase. ref 62. cSolution. ref 49. dGas phase. ref 51.
The delocalized nature of the calculated normal modes complicates their description. Therefore, we choose to assign the bands based on a comparison to the normal modes of the

Figure 3. Experimental IRMPD and simulated linear absorption spectra of \(\text{NO}_3^-\)(HNO\(_3\))\(_m\)(H\(_2\)O)\(_n\)(H\(_2\))\(_z\) complexes, abbreviated by \((m,n,z)\), for \(m = 1, z = 0\). Simulated spectra, derived from B3LYP/aug-cc-pVTZ scaled (0.968) harmonic frequencies and intensities, are convoluted using a Gaussian line shape function with a fwhm of 15 cm\(^{-1}\). For each cluster, the geometry, relative vibrational zero point energy (in kJ/mol), and IR spectrum of the global minimum isomer and of an energetically higher lying isomer is shown. Peaks are labeled according to their assignment to modes of the neutral acid molecule \((A)\), of the conjugate base anion \((B)\), or to shared proton stretching mode \((P)\).

Figure 4. Experimental IRMPD and simulated linear absorption spectra of \(\text{NO}_3^-\)(HNO\(_3\))\(_2\) complexes, without \((2,0,0)\) and with \(\mathrm{H}_2\)-tagging \((2,0,2,1)\). Simulated spectra, derived from B3LYP/aug-cc-pVTZ scaled (0.968) harmonic frequencies and intensities, are convoluted using a Gaussian line shape function with a fwhm of 15 cm\(^{-1}\). The geometry, relative vibrational zero point energy (in kJ/mol), and IR spectrum of the two lowest energy isomers is shown. Experimental peaks and simulated vibrational modes \((\nu)\) are labeled according to their assignment to modes of the neutral acid molecule \((A)\) or of the conjugate base anion \((B)\) (see Table 2). HNO\(_3\) groups above the \(\text{NO}_3^-\)-plane are denoted with +; those below are denoted with – (for details see text).

Table 3. Symmetry and Relative Energies (in kJ/mol) without \((\Delta E)\) and with Zero-Point-Energy Corrections \((\Delta E_{ZPE})\) of the Lowest Energy B3LYP/aug-cc-pVTZ Minimum-Energy Structures for \(\text{NO}_3^-\)(HNO\(_3\))\(_m\)(H\(_2\)O)\(_n\) Clusters

<table>
<thead>
<tr>
<th>cluster symbol</th>
<th>symmetry</th>
<th>(\Delta E)</th>
<th>(\Delta E_{ZPE})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w0a)</td>
<td>(C_1)</td>
<td>0.0</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w0b)</td>
<td>(C_1)</td>
<td>0.2</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w1a)</td>
<td>(C_1)</td>
<td>0.0</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w1b)</td>
<td>(C_1)</td>
<td>3.6</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w1c)</td>
<td>(C_1)</td>
<td>0.2</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w1d)</td>
<td>(C_1)</td>
<td>0.3</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w1e)</td>
<td>(C_1)</td>
<td>2.2</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w1f)</td>
<td>(C_1)</td>
<td>3.8</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w1g)</td>
<td>(C_1)</td>
<td>3.7</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w2a)</td>
<td>(C_1)</td>
<td>0.0</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w2b)</td>
<td>(C_1)</td>
<td>1.4</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w2c)</td>
<td>(C_1)</td>
<td>2.4</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w2d)</td>
<td>(C_1)</td>
<td>3.0</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w2e)</td>
<td>(C_1)</td>
<td>4.3</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w2f)</td>
<td>(C_1)</td>
<td>4.3</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w2g)</td>
<td>(C_1)</td>
<td>4.3</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w2h)</td>
<td>(C_1)</td>
<td>5.3</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_1)</td>
<td>(1w2i)</td>
<td>(C_1)</td>
<td>6.8</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_2)</td>
<td>(2w0a)</td>
<td>(C_2)</td>
<td>0.0</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_2)</td>
<td>(2w0b)</td>
<td>(C_2)</td>
<td>0.4</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_2)</td>
<td>(2w0c)</td>
<td>(C_1)</td>
<td>0.2</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_2)</td>
<td>(2w0d)</td>
<td>(C_1)</td>
<td>0.6</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_2)</td>
<td>(2w0e)</td>
<td>(C_1)</td>
<td>1.3</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_3)</td>
<td>(3w0a)</td>
<td>(C_1)</td>
<td>0.2</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_3)</td>
<td>(3w0b)</td>
<td>(C_1)</td>
<td>0.0</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_3)</td>
<td>(3w0c)</td>
<td>(C_1)</td>
<td>1.0</td>
</tr>
<tr>
<td>(\text{NO}_3^-)(HNO(_3))(_3)</td>
<td>(3w0d)</td>
<td>(C_1)</td>
<td>2.1</td>
</tr>
</tbody>
</table>

See SI for a complete list of all isomers considered.

The delocalized nature of the calculated normal modes complicates their description. Therefore, we choose to assign the bands based on a comparison to the normal modes of the
individual moieties. These combinations of “localized” normal modes were identified qualitatively by eye. In several cases, significant mixing occurs between these modes, in particular, for the ν_3/ν_4 and ν_3/ν_5 pairs, introducing some ambiguity in our assignment.

$m = 1/n = 0$. The two lowest energy structures 1w0a and 1w0b both exhibit the shared-proton motif $\text{O}_2\text{N}_2\text{O}^{\cdots-\cdots}\text{H}\cdots\text{O}_2\text{N}_2\text{O}^{-}$ (see Figure 3). The B3LYP/aug-cc-pVTZ global minimum energy structure 1w0a is planar and has C_2 symmetry. A first-order transition state of D_{2h} symmetry, connecting the two possible C_s isomers along the proton-transfer coordinate, is found only $+0.2$ kJ/mol higher in energy (see Table 3). Thus, while the minimum-energy structure is asymmetric with respect to the position of the proton in between the two nitrate moieties, inclusion of zero-point energy (zpe) is sufficient to overcome the barrier to proton transfer and this cluster effectively contains an equally shared proton. This effect is reflected in the relatively short O–O distance (r_{OO}) of the O–H$^\cdots$O moiety (2.45 Å), indicating the presence of strong hydrogen bonds (SSHB). In addition, a nonplanar isomer 1w0b (C_{2v}-symmetry) is also found only $+0.2$ kJ/mol higher in energy, with the corresponding first-order transition state (C_{2v}-symmetry) at $+0.3$ kJ/mol relative to the C_s structure. Consequently, the potential energy hypersurface in the vicinity of the central proton is very flat with regard to proton transfer as well as to nonplanarity, and one thus expects a symmetrically delocalized proton combined with large amplitude motion of nitrate moieties already in the vibrational ground state. Pronounced anharmonic effects in the gas phase vibrational signature of strong hydrogen bonds are well documented, and the following assignments are therefore only tentative in nature, but sufficient for our purpose. Performing anharmonic calculations on this system goes beyond the scope of the present study, but will be the focus of a follow-up paper.

The presence of both isomeric forms is needed to explain the experimental IRMPD spectra, a reasonable assumption given the scope of the present study, but will be the focus of a follow-up paper. Performing anharmonic calculations on this system goes beyond our purpose. Note that the experimental spectrum of (1,2,0), the predicted IR spectra of (1,2,0), the predicted IR spectra of

$m = 1/n = 1$. Two nearly iso-energetic, characteristically different binding motifs are predicted for the $m = 1, n = 1$ cluster. The global minimum energy structure (1w1a) is planar (C_s) with the water molecule bound to a single nitrate moiety in a double donor (DD) fashion (see Figure 3). A nonplanar (C_{2v}) isomer (1w1b) containing a bridging DD water molecule is calculated $+3.6$ kJ/mol higher in energy, but the zpe-correction reduces the energy difference down to only $+0.2$ kJ/mol (see Table 3). The latter isomer is characterized by a shorter r_{OO} distance between the nitrate moieties (2.46 Å vs 2.52 Å; see Figure 3), indicating stronger central hydrogen bonds and leading to a more symmetric proton binding with O–H bond lengths of 1.12 Å and 1.34 Å, compared to 1.06 Å/1.46 Å in 1w1a. At least five more isomers with similar water binding motifs are found within $+2$ kJ/mol (including zpe) of 1w1a (see Table 3).

The simulated IR spectra of 1w1a and 1w1b (see Figure 3) are markedly different, reflecting the different water binding motif as well as the different hydrogen bond lengths involving the central proton. The IR spectrum of 1w1a is characterized by a single intense band at 1226 cm$^{-1}$ (ν_{60}^{γ}, ν_{61}^{γ}), while the 1w1b spectrum exhibits four similar intense bands at 1739 (ν_{60}^{γ}, ν_{61}^{γ}), 1419 (ν_{60}^{γ}, ν_{61}^{γ}), 1023 (ν_{61}^{γ}, ν_{61}^{γ}), and 946 cm$^{-1}$ (ν_{61}^{γ}, ν_{61}^{γ}). Note that the normal modes of 1w1a are better understood in terms of an asymmetric NO_3^{\cdots}(HNO_3) complex, while those of 1w1b, which exhibits stronger central hydrogen bonds, reflect the shared proton motif. Satisfactory agreement with the experimental spectrum is only found for the 1w1b spectrum, which predicts all observed bands (see Figure 3). Hence, the first water molecule adds to hydrogen dinitrate in a bridging fashion without significantly perturbing the SSHB.

$m = 1/n = 2$. For $m = 1, n = 2$ a larger number of energetically low-lying, planar, and nonplanar isomers are found, seven within $+2$ kJ/mol (including zpe) of the global ground state, which only differ in how the water molecules bind to a hydrogen dinitrate core (see Table 3). The two lowest energy isomers contain an acceptor/donor/donor (ADD) bridging water molecule (see Figure 3), with the planar isomer 1w2b minimally higher in energy ($+0.1$ kJ/mol) than the nonplanar 1w2a. The next two isomers, 1w2c ($+0.2$ kJ/mol, planar) and 1w2d ($+1.0$ kJ/mol, nonplanar), contain DD waters that bind to the same nitrate moiety. These are followed by two isomers, 1w2e ($+1.5$ kJ/mol, planar) and 1w2f ($+1.5$ kJ/mol, nonplanar), which contain two DD water molecules, one of them in a bridging position. Isomers containing two bridging waters are found higher in energy (≥2.8 kJ/mol). Similar to the $m = 1/n = 1$ clusters, the central hydrogen bonds are strengthened by bridging water molecules, reflected in the dependence of r_{OO} on the presence of zero (1w2c: 2.56 Å), one (1w2a: 2.53 Å) and two (1w2i: 2.48 Å) bridging water molecules.

The simulated IR spectra of the six lowest energy isomers are all quite similar with three characteristic IR active modes of decreasing intensity at \sim1250 cm$^{-1}$ (ν_{60}^{γ}, ν_{61}^{γ}), \sim1400 cm$^{-1}$ (ν_{60}^{γ}, ν_{61}^{γ}, ν_{62}^{γ}), and \sim1600 cm$^{-1}$ (ν_{61}^{γ}, ν_{62}^{γ}, ν_{63}^{γ}). Compared to the experimental spectrum of (1,2,0), the predicted IR spectra of 1w2a to 1w2d fit equally well (see Figure 3 and SI), making an assignment to a particular water binding motif difficult. It is probable that multiple, interconverting isomers (with slightly different IR spectra) are present, accounting for the broad IR bands observed in the experimental spectra. The appearance of band A5 and the intense band A3 (see Figure 3), which are not observed in the experimental spectra of the smaller clusters, however, signals that solvation by two water molecules is sufficient to asymmetrically perturb the central SSHB.
\(m = 2/n = 0 \). The most stable binding motif for the \(m = 2 \) clusters consists of a central nitrate moiety solvated by two nitric acid molecules. The global minimum energy structure is the nonplanar \(C_2 \)-structure 2w0a (see Figure 4). The planar \(C_2 \)-structure 2w0b is calculated +0.4 kJ/mol higher in energy, but inclusion of zpe reduces the energy difference to +0.01 kJ/mol. Three additional isoemers with a similar binding motif (2w0c-e, see SI) lie within +1.1 kJ/mol (including zpe) of 2w0a (Table 3).

All five structures 2w0a-e yield similar IR spectra with the most notable differences in the 1300 to 1500 cm\(^{-1}\) region, where strongly coupled \(NO_2 \) symmetric (\(\nu_{2w} \)) and antisymmetric (\(\nu_{1w} \)) stretching, nitrate antisymmetric stretching (\(\nu_{3w} \)), as well as NOH bending (\(\nu_{1a} \)) modes are predicted. The simulated IR spectrum of 2w0b fits particularly well (see Figure 4), because it reproduces the relative positions and intensities of bands A2-A9, B3, and B4. Only the relative intensity of the most intense peak at 1224 cm\(^{-1}\) (\(\nu_{1y} \), \(\nu_{2y} \)), which corresponds to band A3, is apparently overestimated, but this is the case for all isoemers. The spectrum of this isomer cannot account for the feature at \(\sim 1800 \) cm\(^{-1}\) or band A9 (see Figure 4). Band A9 can be nicely reproduced by considering the presence of a second isomer 2w0a, whose \(H-O-N \) torsion mode (\(\nu_{1c} \)) is blue-shifted by +55 cm\(^{-1}\) compared to 2w0b. The feature at \(\sim 1800 \) cm\(^{-1}\), on the other hand, is not predicted in any of the simulated spectra. The OH stretching mode (\(\nu_{1a} \)) is predicted at 2445 cm\(^{-1}\) and is therefore too high to account for this feature, so it is more likely due to combination bands.

\(m = 3/n = 0 \). The lowest energy structures for the \(m = 3 \) clusters all contain a centrally solvated nitrate ion with three nitric acid molecules binding to the three terminal O-atoms. In the global minimum energy structure 3w0a (see Figure 5), one of the nitric acid ligands lies nearly in the same plane as the nitrate ion, while the other two lie almost perpendicular to this plane. The corresponding N\(^{-}\)O\(^{+}\)\(\cdots\)H\(^{+}\)O dihedral angles are 168\(^\circ\), 86\(^\circ\), and −87\(^\circ\). Consequently, the N-atoms of the three nitric acid units are arranged in-plane (in, \(\sim 180\)\(^\circ\)), above (up, >0\(^\circ\)), and below (down, <0\(^\circ\)) the nitrate plane, and we refer to this arrangement as the in/up/down configuration. 3w0b, also shown in Figure 5, exhibits an up/up/down configuration (94\(^\circ\)/84\(^\circ\)/−84\(^\circ\)) and is calculated only +0.2 kJ/mol above 3w0a. Inclusion of zpe makes these two conformers nearly isoenergetic (see Table 3). The symmetric (\(C_2 \)) up/up configuration (97\(^\circ\)/97\(^\circ\)/97\(^\circ\)) conformer 3w0c lies +1.0 kJ/mol (+0.8 kJ/mol) above 3w0a. The planar in/in (180\(^\circ\)/180\(^\circ\)/180\(^\circ\)) configuration of \(C_{3h} \) symmetry lies +2.1 kJ/mol above 3w0a and is not a minimum on the potential energy surface, but rather a first-order transition state, indicating that the barriers to interconversion are small, similar to the smaller clusters.

The simulated IR spectra of the three lowest isoemers (see Figure 5 and SI) all qualitatively reproduce the experimental IRMPD spectra. Bands A2 to A5 are assigned to modes predominantly involving the \(\nu_{2y} \), \(\nu_{1y} \), and \(\nu_{3y} \) vibrations of the nitric acid ligands. Bands B3 and B3\(^\prime\), separated by \(\sim 30 \) cm\(^{-1}\), are tentatively attributed to the two components of the nitrate N\(^{=}\)O antisymmetric stretch (\(\nu_{3w} \)), signifying an asymmetric solvation environment. This splitting is seen particularly well in the \(H_2 \)-tagged spectrum (3,0,\(\geq \)21) in Figure 5, suggesting that messenger-tagging traps this conformer in a shallow local minimum. The IRMPD spectrum of the bare anion probes a somewhat hotter ion distribution, in which this effect is averaged out by rapid isomerization, and thus mainly a single band (B3\(^\prime\)) is observed in this region. A splitting of 11 cm\(^{-1}\) is predicted for 3w0a, three times smaller than the observed value. Band B1 is attributed to the nitrate symmetric stretch (\(\nu_{3w} \)), which is nominally IR-inactive in the bare nitrate ion, but obtains its IR intensity due to non-centrosymmetric solvation. Bands A5–A8 are assigned to the N\(^{-}\)O(H) stretching mode (\(\nu_{3w} \)) as well as the nitric acid core bending modes \(\nu_{1a} \), \(\nu_{1y} \), and \(\nu_{3w} \), respectively, while band B4 is the in-plane rocking mode of the nitrate core.

V. DISCUSSION

Equally Shared Proton Regime. The consideration of anharmonic effects in full dimensionality is essential for a quantitative description of the IR signature of prototypical systems containing SSHBs, as was recently shown for example for \(H_2O_4^+ \) and \(H_2O_4^{-} \).\(^{55,56}\) Hence, the apparent qualitative agreement of the predicted harmonic IR spectra of \(H^+(NO_3^-)_2 \) and \(H^+(NO_3^-)_2(H_2O) \) with the experimental IRMPD spectra is interesting but possibly fortuitous. Therefore, it would be helpful to use another criterion to confirm our assignment of the shared proton stretching band (\(\nu_{1w} \)). For proton-bound heterodimers, one can estimate \(\nu_{1w} \) from the difference in proton affinity of the two groups.\(^{55}\) Here, we propose that for proton-bound homodimers one may use the dependence of \(\nu_{1w} \) on the distance \(r \) of the (heavy) atoms sharing the proton, i.e., \(\nu_{1w} \) in the present case, as a criterion for the assignment of \(\nu_{1w} \) in the equally shared proton regime. Comparison of available gas phase values reveals that \(\nu_{1w} \) for \(H^+(NH_3)_2 \), \(H^+(OH)_2 \), \(H^+(NO_3^-)_2 \), and \(H^+(H_2O)_2 \) are 374 cm\(^{-1}\), 697 cm\(^{-1}\), 877 cm\(^{-1}\) (present work), and 1047 cm\(^{-1}\) respectively, while the predicted values for \(r \) (for the equally shared proton configuration) are 2.75 Å, 2.51 Å, and 2.44 Å (present work, \(C_{3h} \) geometry), and 2.40 Å respectively. Hence, the vibrational frequency of the shared proton stretching mode increases monotonically with decreasing \(r \) in the equally shared proton regime. Simply put, stronger confinement of the motion of the shared proton along the internuclear (heavy atom) axis leads to an increase of the spacing of the vibrational levels and hence an increase of the fundamental vibrational transitions, supporting our assignment. This relationship should hold as long as the barrier for proton transfer is nonexistent or small compared to the zero-point energy.

Influence of Solvation. The central proton in hydrogen dinitrate sensitively responds to solvation with water or nitric acid molecules. Figure 6 shows calculated O–H bond lengths as a function of \(r_{OH} \), which is a measure for the HB strength, for the relevant cluster geometries described above. The nonplanar conformer of hydrogen dinitrate (1w0b) exhibits the shortest O–O distance (2.44 Å), followed by its planar counterpart (1w0a: 2.46 Å). Addition of a single water molecule does not necessarily destabilize this arrangement if it binds in a bridging fashion (1w1b). However, if the water adds to a single nitrate moiety (1w1a) or two water molecules are added (1w2a, 1w2c), then \(r_{OH} \) increases significantly (>2.5 Å) and the SSHB motif is replaced by a short covalent O–H and a longer HB. A more pronounced effect (2.57 Å) is observed upon addition of a second nitric acid molecule (2w0a, 2w0b). Finally, the third nitric acid molecule completes the first solvation shell around the nitrate ion and exhibits the weakest (\(r_{OH} \geq 2.62 \) Å) HBs. Hand in hand with the softening of the SSHB, the N–O(H) bond lengths increase from 1.33 Å to 1.37 Å in the nitric acid units and decrease to 1.25 Å in the nitrate core.

The above-described softening of the SSHB, originally present in bare hydrogen dinitrate, upon solvation has several effects on its experimental IR signature. In the spectrum of the bare hydrogen dinitrate anion, the characteristic shared proton stretching mode is observed at 877 cm\(^{-1}\). Addition of one
water molecule leads to a blue shift of 21 cm⁻¹ in the IRMPD spectrum. Addition of more than one water molecule or nitric acid molecule moves it to higher energies and out of the investigated spectral range. Concomitant with the lifting of the symmetric binding arrangement, the characteristic IR active bands of nitric acid appear in the IR spectrum.

IRMPD Transparency. Upon messenger-tagging with H₂ bands emerge in the N=O stretching and core bend regions for the m = 1 clusters, which are not observed in the IRMPD spectra of the corresponding bare species. Moreover, the spectra of the H₂-tagged clusters are in much better agreement with the simulated linear absorption spectra predicted by the harmonic calculations. There are two reasons for this behavior. First, fewer photons are needed to photodissociate the H₆-anion complex, and hence the IRMPD intensities are closer to the linear absorption cross sections. Second, the H₂-anion complexes are colder, since the overall internal energy must lie close to or below the anion-H₂ bond dissociation energy for the tagged complex to survive. The observation of IRMPD transparent bands has been recently discussed in the context of hydrogen bond network disruption in sulfate–sulfuric acid clusters.25,54,61 Here, the origin of the observed IRMPD transparency is different, as no hydrogen bonds can be broken in the bare cluster anions without immediate dissociation. Rather, in the present case, the large amplitude motion due to conformational fluctuations of the clusters already at low internal energies leads to a less efficient absorption IRMPD process. Presumably, this is a consequence of a “smearing out” of the transition strengths for the first few absorption steps, resulting in the absence of peaks in the IRMPD spectra of the hotter bare clusters compared to the single- or few-photon spectra of the colder H₂-tagged clusters.

VI. SUMMARY AND CONCLUSIONS

In summary, the present study reports the first IRMPD spectra of nitrate/nitric acid/water clusters in the fingerprint region. It shows that IRMPD is a sensitive method for probing the solvation environment and emphasizes the exceptional solvation behavior of the m = 1 cluster. While the addition of a single water molecule does not destabilize the shared proton motif, additional solvation is sufficient to induce an asymmetry in the central strong hydrogen bonds, leading to a solvated nitrate/nitric acid motif for the larger clusters. The change in solvation motif is reflected in the concomitant disappearance of the shared proton mode and the appearance of characteristic HNO₃ modes.

Similar to previously reported results for microsolvated conjugated base anions, this work provides additional examples for systems with IRMPD transparent modes. Tagging with H₂ molecules or addition of water lowers the dissociation limit of the cluster such that this transparency is lifted or relaxed, leading to additional bands in the core bending and N=O stretching region. The tagged spectra are in much better agreement with the calculated frequencies and intensities.

Comparison of thin film results to the IRMPD spectra of the higher hydrated m = 2 clusters shows a strong resemblance to the condensed phase, suggesting that upon additional hydration the changes in nitric acid modes will be small. However, further spectroscopic experiments on microsolvated conjugate base anions are necessary to determine the degree of acid dissociation in NO₃⁻/HNO₃/H₂O clusters as a function of the cluster composition and temperature.

ASSOCIATED CONTENT

Supporting Information

Comparison of experimental IRMPD and additional simulated linear absorption spectra for NO₃⁻(HNO₃)ₙ(H₂O)ₙ clusters. Tabulated energies, symmetries, and geometrical parameters for minimum-energy structures. This material is available free of charge via the internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: knut.asmis@uni-leipzig.de.
*E-mail: dneumark@berkeley.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Stichting voor Fundamenteel Onderzoek der Materie (FOM) for granting the required beam time and greatly appreciate the skill and assistance of the FELIX staff. This research is funded by the European Community’s Seventh Framework Program (FP7/2007-2013, Grant 226716) and the Air Force Office of Scientific Research (FA9550-12-1-1060). T.I.Y. thanks the National Science and Engineering Research Council of Canada (NSERC) for a postgraduate scholarship.

REFERENCES

regions. Bond energies for HSO₄⁻ ion decomposition in a quadrupole ion trap.

Sekimoto, K.; Takayama, M. Observations of Different Core Water Cluster Ions Y(H₂O)ₓ(Y = O₂, HO₃, NO₃, CO₃) and Magic Number in Atmospheric Pressure Negative Corona Dissocompoundspectroscopy. J. Mass Spectrom. 2010, 45, 50–60.

